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Chapter 1

Review

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Give a summary of the ideas you learned in 112, including graphing, deriva-
tives (product, quotient, power, chain, trig, exponential, and logarithm
rules), and integration (u-sub and integration by parts).

2. Compute the differential dy of a function and use it to approximate the
change in a function.

3. Explain how to perform matrix multiplication and compute determinants
of square matrices.

4. Tlustrate how to solve systems of linear equations, including how to express
a solution parametrically (in terms of ¢) when there are infinitely solutions.

5. Extend the idea of differentials to approximate functions using parabolas,
cubics, and polynomials of any degree.

You’ll have a chance to teach your examples to your peers prior to the exam.

1.1 Review of First Semester Calculus

1.1.1 Graphing

We'll need to know how to graph by hand some basic functions. If you have
not spent much time graphing functions by hand before this class, then you
should spend some time graphing the following functions by hand. When we
start drawing functions in 3D, we’ll have to piece together infinitely many 2D
graphs. Knowing the basic shape of graphs will help us do this.

Problem 1.1 | Provide a rough sketch of the following functions, showing

their basic shapes:

> 3.4 1 x
z*,x°, 2%, —,sinx, cos x, tan z, sec x, arctan x, e” | In x.
x

Then use a computer algebra system, such as Wolfram Alpha, to verify your
work. T suggest Wolfram Alpha, because it is now built into Mathematica 8.0.
If you can learn to use Wolfram Alpha, you will be able to use Mathematica.



http://http://www.wolframalpha.com/
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1.1.2 Derivatives

In first semester calculus, one of the things you focused on was learning to
compute derivatives. You’ll need to know the derivatives of basic functions (found
on the end cover of almost every calculus textbook). Computing derivatives
accurately and rapidly will make learning calculus in high dimensions easier.
The following rules are crucial.
1

e Power rule (z") = nz™~
e Sum and difference rule (f +¢g) = f'+ ¢
! ’ ’
e Product (fg)' = f'g+ f¢’ and quotient rule (f> = M
g g
e Chain rule (arguably the most important) (f o g) = f'(g(x)) - ¢'(x)

Problem 1.2| Compute the derivative of €3¢ cos(tan(x)+In(x?+4)). Show

each step in your computation, making sure to show what rules you used.

e?’ cot(4p + 7)

Problem 1.3| If y(p) = fan—L(pY)

in your computation, making sure to show what rules you used.

find dy/dp. Again, show each step

The following problem will help you review some of your trigonometry, inverse
functions, as well as implicit differentiation.

Problem 1.4

y = arcsinz is ¢y =

Use implicit differentiation to explain why the derivative of

———. [Rewrite y = arcsinz as x = siny, differentiate
V1— 22

both sides, solve for y’, and then write the answer in terms of z].

1.1.3 Integrals

Each derivative rule from the front cover of your calculus text is also an integra-
tion rule. In addition to these basic rules, we’ll need to know three integration
techniques. They are (1) u-substitution, (2) integration-by-parts, and (3) inte-
gration by using software. There are many other integration techniques, but
we will not focus on them. If you are trying to compute an integral to get
a number while on the job, then software will almost always be the tool you
use. As we develop new ideas in this and future classes (in engineering, physics,
statistics, math), you’ll find that u-substitution and integrations-by-parts show
up so frequently that knowing when and how to apply them becomes crucial.

Problem 1.5| Compute /z\/ z2 + 4dzx.

Problem 1.6| Compute /xsin 2zdx.

Problem 1.7| Compute /arctanxdm‘.

Problem 1.8 Compute /:Z:QeSmdx.

See sections 3.2-3.6 for more
practice with derivatives. The
later problems in 3.6 review of
most of the entire differentiation
chapter.

See sections 3.7-3.9 for more
examples involving inverse trig
functions and implicit
differentiation.

For practice with u-substitution,
see section 5.5 and 5.6.

For practice with integration by
parts, see section 8.1.
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1.2 Differentials

The derivative of a function gives us the slope of a tangent line to that function.

We can use this tangent line to estimate how much the output (y values) will

d
change if we change the input (z-value). If we rewrite the notation Y f'in

T
the form dy = f'dx, then we can read this as “A small change in y (called dy)
equals the derivative (f’) times a small change in = (called dx).”

Definition 1.1. We call dz the differential of x. If f is a function of x, then
the differential of f is df = f’(x)dx. Since we often write y = f(x), we’ll
interchangeably use dy and df to represent the differential of f.

We will often refer to the differential notation dy = f’dx as “a change in the
output y equals the derivative times a change in the input z.”

If f(z) = 2?In(3x + 2) and g(t) = €' tan(¢?) then compute

df and dg.

Most of higher dimensional calculus can quickly be developed from differential
notation. Once we have the language of vectors and matrices at our command, we
will develop calculus in higher dimensions by writing dy = D f(Z)dZ. Variables
will become vectors, and the derivative will become a matrix.

This problem will help you see how the notion of differentials is used to
develop equations of tangent lines. We’ll use this same idea to develop tangent
planes to surfaces in 3D and more.

Problem 1.10‘ Consider the function y = f(x) = z2. This problem has
multiple steps, but each is fairly short.

1. Find the differential of y with respect to z.
2. Give an equation of the tangent line to f(z) at x = 3.

3. Draw a graph of f(z) and the tangent line on the same axes. Place a dot
at the point (3,9) and label it on your graph. Place another dot on the
tangent line up and to the right of (3,9). Label the point (z,y), as it will
represent any point on the tangent line.

4. Using the two points (3,9) and (z,y), compute the slope of the line
connecting these two points. Your answer should involve x and y. What is
the rise (i.e, the change in y called dy)? What is the run (i.e, the change
in z called dx)?

5. We already know the slope of the tangent line is the derivative f'(3) = 6.
We also know the slope from the previous part. These two must be equal.

Use this fact to give an equation of the tangent line to f(x) at x = 3.

Problem 1.11| The manufacturer of a spherical storage tank needs to create
4.3

a tank with a radius of 3 m. Recall that the volume of a sphere is V(r) = 37mr°.

No manufacturing process is perfect, so the resulting sphere will have a radius

of 3 m, plus or minus some small amount dr. The actual radius will be 3 + dr.

Find the differential dV. Then use differentials to estimate the change in the
volume of the sphere if the actual radius is 3.02 m instead of the planned 3 m.

See 3.10:19-38.

See 3.11:39-44. Also see problems
3.11:1-18. The linearization of a

function is just an equation of the
tangent line where you solve for y.

See 3.11:45-62.
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Problem 1.12| A forest ranger needs to estimate the height of a tree. The
ranger stands 50 feet from the base of tree and measures the angle of elevation
to the top of the tree to be about 60°. If this angle of 60° is correct, then what
is the height of the tree? If the ranger’s angle measurement could be off by
as much as 5°, then how much could his estimate of the height be off? Use
differentials to give an answer.

1.3 DMatrices

We will soon discover that matrices represent derivatives in high dimensions.
When you use matrices to represent derivatives, the chain rule is precisely
matrix multiplication. For now, we just need to become comfortable with matrix
multiplication.

We perform matrix multiplication “row by column”. Wikipedia has an
excellent visual illustration of how to do this. See Wikipedia for an explanation.
See texample.net for a visualization of the idea.

‘ Problem 1.13 ‘ Compute the following matrix products.

-1
e 3 2 1]|2
0

bk

3 9 1 -1 3 0
‘Problem 1.14‘ Compute the product 2 -1 0].
01 —4 0 1 o

1.3.1 Determinants

Determinants measure area, volume, length, and higher dimensional versions of
these ideas. Determinants will appear as we study cross products and when we
get to the high dimensional version of u-substitution.

Associated with every square matrix is a number, called the determinant,
which is related to length, area, and volume, and we use the determinant to
generalize volume to higher dimensions. Determinants are only defined for
square matrices.

Definition 1.2. The determinant of a 2 x 2 matrix is the number
a b a b
det [c d} T le d

The determinant of a 3 x 3 matrix is the number

’:ad—bc.

a b c
d e fl=adet ¢ f‘ — bdet d f‘ —i—cdet‘d €
g h i h i g i g h

a(ei — hf) —b(di — gf) + ¢(dh — ge).

The links will open your browser
and take you to the web.

For extra practice, make up two
small matrices and multiply them.
Use Sage or Wolfram Alpha to see
if you are correct (click the links
to see how to do matrix
multiplication in each system).

We use vertical bars next to a
matrix to state we want the
determinant, so det A = |A|.

Notice the negative sign on the
middle term of the 3 x 3
determinant. Also, notice that we
had to compute three
determinants of 2 by 2 matrices in
order to find the determinant of a
3 by 3.


http://en.wikipedia.org/wiki/Matrix_multiplication
http://www.texample.net/tikz/examples/matrix-multiplication/
http://aleph.sagemath.org/?z=eJxztM1NLCnKrNCIjjbUMdYxiY3V5HJCiJnrGMXqKICkQJSukY4BSIGjlhMA16EPQw
http://www.wolframalpha.com/input/?i=%281%2C3%2C4%29+*%28%287%2C2%29%2C%281%2C3%29%2C%28-2%2C0%29%29
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1 2

9 0
3 4 and |—-1 3 4.
2 -3 1

Problem 1.15| Compute

What good is the determinant? The determinant was discovered as a result of
trying to find the area of a parallelogram and the volume of the three dimensional
version of a parallelogram (called a parallelepiped) in space. If we had a full
semester to spend on linear algebra, we could eventually prove the following
facts that I will just present here with a few examples.

Consider the 2 by 2 matrix [g ﬂ whose determinant is 3-2—0-1 = 6. Draw

1 . . ..
the column vectors B] and [2] with their base at the origin (see figure 1.1).
These two vectors give the edges of a parallelogram whose area is the determinant
6. If T swap the order of the two vectors in the matrix, then the determinant of

B g} is —6. The reason for the difference is that the determinant not only

keeps track of area, but also order. Starting at the first vector, if you can turn
counterclockwise through an angle smaller than 180° to obtain the second vector,
then the determinant is positive. If you have to turn clockwise instead, then the
determinant is negative. This is often termed “the right-hand rule,” as rotating
the fingers of your right hand from the first vector to the second vector will
cause your thumb to point up precisely when the determinant is positive.

T T
Area =6
_|_ i
3 1 1 3
’O 2‘—Gand ‘2 0‘——6

Figure 1.1: The determinant gives both area and direction. A counter clockwise
rotation from column 1 to column 2 gives a positive determinant.

For a 3 by 3 matrix, the columns give the edges of a three dimensional
parallelepiped and the determinant produces the volume of this object. The sign
of the determinant is related to orientation. If you can use your right hand and
place your index finger on the first vector, middle finger on the second vector,
and thumb on the third vector, then the determinant is positive. For example,

100
consider the matrix A = [0 2 0]|. Starting from the origin, each column
0 0 3

represents an edge of the rectangular box 0 < 2 <1, 0<y <2, 0<2<3
with volume (and determinant) V = lwh = (1)(2)(3) = 6. The sign of the
determinant is positive because if you place your index finger pointing in the
direction (1,0,0) and your middle finger in the direction (0,2,0), then your thumb
points upwards in the direction (0,0,3). If you interchange two of the columns,

0 1 0
for example B= [2 0 0], then the volume doesn’t change since the shape is
0 0 3

still the same. However, the sign of the determinant is negative because if you
point your index finger in the direction (0,2,0) and your middle finger in the
direction (1,0,0), then your thumb points down in the direction (0,0,-3). If you

For extra practice, create your
own square matrix (2 by 2 or 3 by
3) and compute the determinant
by hand. Then use Wolfram
Alpha to check your work. Do this
until you feel comfortable taking
determinants.
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repeat this with your left hand instead of right hand, then your thumb points
up.

Problem 1.16 ‘ e Use determinants to find the area of the triangle with
vertices (0,0), (—=2,5), and (3,4).

e What would you change if you wanted to find the area of the triangle with
vertices (—3,1), (—2,5), and (3,4)? Find this area.

1.4 Solving Systems of equations

‘ Problem 1.17 ‘ Solve the following linear systems of equations. For additional practice, make up
your own systems of equations.
Use Wolfram Alpha to check your

° {x-l—y =3 work.

20—y =4

. —x+4dy =38
3z —12y =2

r+y+z =3
This link will show you how to

‘Problem 1.18 Find all solutions to the linear system .
2 —y =4 specify which variable is ¢ when

Since there are more variables than equations, this suggests there is probably using Wolfram Alpha.
not just one solution, but perhaps infinitely many. One common way to deal

with solving such a system is to let one variable equal ¢, and then solve for the

other variables in terms of ¢. Do this three different ways.

e If you let = ¢, what are y and z. Write your solution in the form (z,y, 2)
where you replace x, y, and z with what they are in terms of ¢.

e If you let y = ¢, what are x and z (in terms of t).

e If you let z = t, what are x and y.

1.5 Higher Order Approximations

When you ask a calculator to tell you what e'! means, your calculator uses an
extension of differentials to give you an approximation. The calculator only
uses polynomials (multiplication and addition) to give you an answer. This
same process is used to evaluate any function that is not a polynomial (so trig
functions, square roots, inverse trig functions, logarithms, etc.) The key idea
needed to approximate functions is illustrated by the next problem.

‘ Problem 1.19‘ Let f(z) = e®. You should find that your work on each step
can be reused to do the next step.

e Find a first degree polynomial P;(x) = a + bx so that P;(0) = f(0) and
P{(0) = f'(0). In other words, give me a line that passes through the
same point and has the same slope as f(z) = e” does at © = 0. Set up a
system of equations and then find the unknowns a and b. The next two
are very similar.


http://www.wolframalpha.com/input/?i=Solve+x%2B2y%3D3+and+4x-y%2Bz%3D7+and+x%3Dt
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e Find a second degree polynomial P (z) = a+bx+cx? so that P»(0) = £(0),
Pj(0) = f'(0), and P4 (0) = f”(0). In other words, give me a parabola
that passes through the same point, has the same slope, and has the same
concavity as f(z) = e” does at z = 0.

e Find a third degree polynomial P3(z) = a + bx + cx?® + dz3 so that
Py(0) = £(0), Pj(0) = f/(0), P{(0) = f"(0), and P}"(0) = f"(0). In
other words, give me a cubic that passes through the same point, has the
same slope, the same concavity, and the same third derivative as f(z) = e”
does at x = 0.

e Now compute el with a calculator. Then compute P;(.1), Py(.1), and

P;3(.1). How accurate are the line, parabola, and cubic in approximating
19
el?

‘Problem 1.20‘ Now let f(z) = sinz. Find a 7th degree polynomial so
that the function and the polynomial have the same value and same first seven
derivatives when evaluated at = 0. Evaluate the polynomial at x = 0.3. How
close is this value to your calculator’s estimate of sin(0.3)? You may find it
valuable to use the notation

P(I) =a0+a1x+a2x2 +a3x3+...+a7x7.

The previous two problems involved finding polynomial approximations to
the function at £ = 0. The next problem shows how to move this to any other
point, such as x = 1.

Problem 1.21‘ Let f(z) = e”.

e Find a second degree polynomial
T(x) = a+ bz + cz?

so that T(1) = f(1), T'(1) = f'(1), and T"(1) = f”(1). In other words,
give me a parabola that passes through the same point, has the same
slope, and the same concavity as f(x) = e¢* does at = 1.

e Find a second degree polynomial written in the form
S(z)=a+blx—1)+c(z—1)>

so that S(1) = f(1), S’(1) = f'(1), and S”(1) = f(1). In other words,
find a quadratric that passes through the same point, has the same slope,
and the same concavity as f(z) = e® does at = 1.

e Find a third degree polynomial written in the form
P)=a+blx—1)+clx—1)*+dxz—1)3

so that P(1) = f(1), P'(1) = f'(1), P"(1) = (1), and P"'(1) = f"'(1).
In other words, give me a cubic that passes through the same point, has
the same slope, the same concavity, and the same third derivative as
f(x) =€® does at = = 1.

The polynomial you are creating is
often called a Taylor polynomial.
(I'm giving you the name so that
you can search online for more
information if you are interested.)

Notice that we just replaced =
with z — 1. This centers, or shifts,
the approximation to be at z = 1.
The first part will be much
simpler now when you let z = 1.
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Example 1.3. This example refers back to problem 1.11. We wanted a spherical

tank of radius 3m, but due to manufacturing error the radius was slightly off.

Let’s now illustrate how we can use polynomials to give a first, second, and
third order approximation of the volume if the radius is 3.02m instead of 3m.

We start with V' = %m"?’ and then compute the derivatives

V' =47r?, V" = 8xr, and V"' = 8.

Because we are approximating the increase in volume from r» = 3 to something
new, we’ll create our polynomial approximations centered at r = 3. We'll
consider the polynomial

P(r)=ag+ai(r —3) + as(r — 3)® + as(r — 3)3,
whose derivatives are
P’ = a1 + 2a(r — 3) + 3as(r — 3)27PH = 2ay + 6az(r — 3), P = 6as

So that the derivatives of the volume function match the derivatives of the
polynomial (at r = 3), we need to satisfy the equations in the table below.

k | Value of V at the kth derivative | Value of P at the the kth derivative | Equation
0 V(3) = 57(3)% = 36m P(3) = ap ag = 367
1 V'(3) = 4n(3)? = 367 P'(3) =a a, = 367
2 V"(3) = 8n(3) = 24m P"(3) = 2as 2a9 = 247
3 V"(3) = 8w P""(3) = 6as 6az = 8w

This tells us that the third order polynomial is

4
P(r) = ap+ai(r—3)+az(r—3)*+az(r—3)° = 367r—|—367r(7“—3)+127r(7“—3)2—|—§7r(7“—3)3.

We wanted to approximate the volume if r = 3.2, so our change in r is dr =
3.2 — 3 =0.2. We can rewrite our polynomial as

4
P(r) = 36w + 367 (dr) + 127 (dr)? + gﬂ(dﬂs.

We are now prepared to approximate the volume using a first, second, and third
order approximation.

1. A first order approximation yields P = 367 4 367 - 0.02 = 36.727. The
volume increased by 0.727 m?>.

2. A second order approximation yields

P =367 + 367 - 0.02 + 127(0.02)? = 36.72487.
3. A third order approximation yields

4 _
P = 367 + 367 - 0.02 + 12m(0.02)° + £ (0.02)° = 36.7248106.

With each approximation, we add on a little more volume to get closer to the
actual volume of a sphere with radius r = 3.02. The actual volume of a sphere
involves a cubic function, so when we approximate the volume with a cubic, we
should get an exact approximation (and V(3.02) = 37(3.02)% = (36.7248106).)
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We’ll end this section with a problem to practice the example above.

Problem 1.22| Suppose you are constructing a cube whose side length should
be s = 2 units. The manufacturing process is not exact, but instead creates a
cube with side lengths s = 2 + ds units. (You should assume that all sides are
still the same, so any error on one side is replicated on all. We have to assume
this for now, but before the semester ends we’ll be able to do this with high
dimensional calculus.)

Suppose that the machine creates a cube with side length 2.3 units instead
of 2 units. Note that the volume of the cube is V = s3. Use a first, second,
and third order approximation to estimate the increase in volume caused by
the .3 increase in side length. Then compute the actual increase in volume
V(2.3) =V (2).

1.6 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to Brainhoney and download the quiz. Once you have taken
the quiz, you can upload your work back to brainhoney and then download the
key to see how you did. If you still need to work on mastering some of the ideas,
please do so and then demonstrate your mastery though the quiz corrections.

Ask me in class to draw a 3D
graph which illustrates the volume
added on by each successive
approximation. As a challenge,
try to construct this graph
yourself first. If you have it before
I put it up in class, let me know
and I'll let you share what you
have discovered with the class.
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Vectors

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Define, draw, and explain what a vector is in 2 and 3 dimensions.

2. Add, subtract, multiply (scalar, dot product, cross product) vectors. Be
able to illustrate each operation geometrically.

3. Use vector products to find angles, length, area, projections, and work.

4. Use vectors to give equations of lines and planes, and be able to draw lines
and planes in 3D.

You’ll have a chance to teach your examples to your peers prior to the exam.

2.1 Vectors and Lines

Learning to work with vectors will be key tool we need for our work in high
dimensions. Let’s start with some problems related to finding distance in 3D,
drawing in 3D, and then we’ll be ready to work with vectors.

Problem 2.1 | To find the distance between two points (z1,y1) and (22, y2) in

the plane, we create a triangle connecting the two points. The base of the triangle
has length Az = (22 — 1) and the vertical side has length Ay = (y2 — y1).
The Pythagorean theorem gives us the distance between the two points as
VAZ2 + Ay? = /(22 — 21)2 + (Y2 — y1)%

Show that the distance between two points (x1,y1,21) and (z2,¥s2, 22) in

3-dimensions is /Az2 + Ay2 + Az2 = /(22 — 21)% + (y2 — v1)2 + (22 — 21)2.

roblem 2.2| Find the distance between the two points P = (2,3, —4) and

P
Q = (0,—1,1). Then find an equation of the sphere passing though point @
whose center is at P.

Problem 2.3 | For each of the following, construct a rough sketch of the set

of points in space (3D) satisfying:

1. 2<2<5

10

See 12.1:41-58.

See 12.1:1-40.
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2. x=2,y=3

3.2 +y’+22=25

Definition 2.1. A vector is a magnitude in a certain direction. If P and @
are points, then the vector P_Q is the directed line segment from P to Q. This
definition holds in 1D, 2D, 3D, and beyond. If V' = (vy,vs,v3) is a point in
space, then to talk about the vector ¢’ from the origin O to V we’ll use any of
the following notations:

U1
U= 0V = (v1,v2,03) = v1i+ v2j + vsk = (v1,v2,v3) = | v2
U3

The entries of the vector are called the x, y, and z components of the vector.

Note that (v1,ve,v3) could refer to either the point V' or the vector ¥. The
context of the problem we are working on will help us know if we are dealing
with a point or a vector.

Definition 2.2. Let R represent the set real numbers. Real numbers are actually
1D vectors. Let R? represent the set of vectors (z1,72) in the plane. Let R?
represent the set of vectors (x1,z2,23) in space. There’s no reason to stop at 3,
so let R™ represent the set of vectors (1,2, ...,2,) in n dimensions.

In first semester calculus and before, most of our work dealt with problem
in R and R2. Most of our work now will involve problems in R? and R3. We've
got to learn to visualize in R3.

Definition 2.3. The magnitude, or length, or norm of a vector ¥ = (v1, va, v3)
is |0] = /v? + v3 + v3. It is just the distance from the point (v1,v2,v3) to the
origin. A unit vector is a vector whose length is one unit.

The standard unit vectors are i = (1,0,0), j = (0,1,0), k = (0,0, 1).

Note that in 1D, the length of the vector (—2) is simply | —2| = 1/(—2)2 = 2,
the distance to 0. Our use of the absolute value symbols is appropriate, as it
generalizes the concept of absolute value (distance to zero) to all dimensions.

Definition 2.4. Suppose & = (x1,x2,x3) and § = (y1,y2, y3) are two vectors in
3D, and c is a real number. We define vector addition and scalar multiplication
as follows:

e Vector addition: £+ § = (x1 + y1,22 + y2, 3 + y3) (add component-wise).
e Scalar multiplication: ¢# = (cz1, cxa, cx3).

Problem 2.4| Cousider the vectors @ = (1,2) and ¥ = (3,1). Draw @, U, See 12.2:23-24.
U + v, and 4 — ¥ with their tail placed at the origin. Then draw ¢ with its tail
at the head of .

Consider the vector ¥ = (3, —1). Draw ¥, —#, and 3¢. Suppose See 11.1: 3,4.
a donkey travels along the path given by (x,y) = ¢t = (3t, —t), where t represents

time. Draw the path followed by the donkey. Where is the donkey at time

t =0,1,27 Put markers on your graph to show the donkey’s location. Then

determine how fast the donkey is traveling.
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In the previous problem you encountered (z,y) = (3t,—t). This is an
example of a function where the input is ¢ and the output is a vector (x,y). For
each input ¢, you get a single vector output (z,y). Such a function is called a
parametrization of the donkey’s path. Because the output is a vector, we call
the function a vector-valued function. Often, we’ll use the variable 7 to represent
the radial vector (z,y), or (z,y, z) in 3D. So we could rewrite the position of the
donkey as 7(t) = (3, —1)t. We use 7 instead of r to remind us that the output is
a vector.

Problem 2.6 Suppose a horse races down a path given by the vector-

valued function 7(t) = (1,2)t + (3,4). (Remember this is the same as writing
(x,y) = (1,2)t + (3,4) or similarly (x,y) = (1t + 3,2t + 4).) Where is the horse
at time t = 0,1,2?7 Put markers on your graph to show the horse’s location.
Draw the path followed by the horse. Give a unit vector that tells the horse’s
direction. Then determine how fast the horse is traveling.

Problem 2.7| Consider the two points P = (1,2,3) and Q = (2,—1,0).
Write the vector PZ) in component form (a,b,c). Find the length of vector P@.

Then find a unit vector in the same direction as P@. Finally, find a vector of
length 7 units that points in the same direction as PQ.

Problem 2.8| A raccoon is sitting at point P = (0,2, 3). It starts to climb

in the direction ¥ = (1, —1,2). Write a vector equation (x,y, z) = (?,7,7?) for the
line that passes through the point P and is parallel to ¢. [Hint, study problem
2.6, and base your work off of what you saw there. It’s almost identical.]

Then generalize your work to give an equation of the line that passes through
the point P = (x1,y1, 21) and is parallel to the vector ¥ = (v, v2,v3).

Make sure you ask me in class to show you how to connect the equation
developed above to what you have been doing since middle school. If you can
remember y = mx + b, then you can quickly remember the equation of a line. If
I don’t show you in class, make sure you ask me (or feel free to come by early
and ask before class).

Let P = (3,1) and Q = (~1,4).

e Write a vector equation 7(t) = (z,y) for (i.e, give a parametrization of)
the line that passes through P and @, with #(0) = P and 7(1) = Q.

e Write a vector equation for the line that passes through P and @, with
7(0) = P but whose speed is twice the speed of the first line.

e Write a vector equation for the line that passes through P and @Q, with

7(0) = P but whose speed is one unit per second.

See 12.2: 1.

See 12.2: 9,17,25,33 and
surrounding.

See 12.5: 1-12.

See 12.5: 13-20.
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2.2 The Dot Product

Now that we’ve learned how to add and subtract vectors, stretch them by scalars,
and use them to find lines, it’s time to introduce a way of multiplying vectors
called the dot product. We’ll use the dot product to help us find find angles.
First, we need to recall the law of cosines.

Theorem (The Law of Cosines). Consider a triangle with side lengths a, b,
and c. Let 6 be the angle between the sides of length a and b. Then the law of
cosines states that

& =a?+b* — 2abcos .

If § = 90°, then cos@ = 0 and this reduces to the Pythagorean theorem.

Definition 2.5: The Dot Product. If & = (u1,us,u3) and ¥ = (v1, va,v3)
are vectors in R3, then we define the dot product of these two vectors to be

U= U1V1 + U2 + u3vs.

S

A similar definition holds for vectors in R™, where @-¥ = u1v1 +usvs+- + - +UpUp.
You just multiply corresponding components together and then add. It is the
same process used in matrix multiplication.

‘Problem 2.10‘ If
(which is often written

@ = (ui,uz,u3) and ¥ = (vy,ve,v3) are vectors in R3
i, v € R?), then show that

@ — 32 = |@? — 2@ -7 + |5

Problem 2.11 ‘ Sketch in R? the vectors (1,2) and (3,5). Use the law of
cosines to find the angle between the vectors.

‘ Problem 2.12 ‘ Let i, 7 € R3. Let 6 be the angle between # and .

1. Use the law of cosines to explain why |@ — 7] = |i@|? + |v]> — 2|]||] cos 6.

2. Use the above together with problem 2.10 to explain why

—

- U= |u]|V] cosh.

‘Problem 2.13‘ Sketch in R? the vectors (1,2,3) and (—2,1,0). Use the
law of cosines to find the angle between the vectors. Then use the formula
@ - U = |t]|V] cos to find the angle between them. Which was easier?

Definition 2.6. We say that the vectors # and ¥ are orthogonal if « - ¥ = 0.

Problem 2.14‘ Find two vectors orthogonal to (1,2). Then find 4 vectors
orthogonal to (3,2,1).

Problem 2.15 ‘ Mark each statement true or false. Explain. You can assume
that @, 7,w € R® and that ¢ € R.

Page 693 has the solution if you
are struggling.

See 12.3: 9-12.

See page 693.

See 12.3: 9-12.
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Problem 2.16‘ Show that if two nonzero vectors ¢ and v are orthogonal, See page 694.

then the angle between them is 90°. Then show that if the angle between them
is 90°, then the vectors are orthogonal.

The dot product provides a really easy way to find when two vectors meet
at a right angle. The dot product is precisely zero when this happens.

2.2.1 Projections and Work

Suppose a heavy box needs to be lowered down a ramp. The box exerts a
d_‘ownward force of 200 Newtons, which we will write in vector notation as
F = {0,—200). The ramp was placed so that the box needs to be moved right 6

m, and down 3 m, so we need to get from the origin (0,0) to the point (6, —3).

This displacement can be written as d= (6,—3). The force F acts straight
down, which means the ramp takes some of the force. Our goal is to find out
how much of the 200N the ramp takes, and how much force must be applied to
prevent the box from sliding down the ramp (neglecting friction). We are going
to break the force F into two components, one component in the direction of d_:
and another component orthogonal to d.

Problem 2.17| Read the preceding paragraph. We want to write F' as the

sum of two vectors F' = i + 7, where 1 is parallel to d and 7 is orthogonal to d.

Since o is parallel to d, we can write 1 = ed for some unknown scalar ¢. This
means that F = cd + ii. Use the fact that 7 is orthogonal to d to solve for the
unknown scalar ¢. [Hint: dot each side of F = cd + it with d. This should turn
the vectors into numbers, so you can use division.]

The solution to the previous problem gives us the definition of a projection.

Definition 2.7. The projection of F onto J; written projjﬁ, is defined as

., F-d
proj; F' = = | d
( d ’ d )

Problem 2.18‘ Let @ = (—1,2) and ¢ = (3,4). Draw @, ¢, and projg
Then draw a line segment from the head of @ to the head of the projection.

Now let @ = (—2,0) and keep ¥ = (3,4). Draw #, ¥, and proj; @. Then draw
a line segment from the head of @ to the head of the projection.

One final application of projections pertains to the concept of work. Work
is the transfer of energy. If a force F' acts through a displacement d, then the
most basic definition of work is W = Fd, the product of the force and the
displacement. This basic definition has a few assumptions.

U. See 12.3:1-8 (part d).
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e The force F' must act in the same direction as the displacement.

e The force F' must be constant throughout the entire displacement.

15

e The displacement must be in a straight line.

Before the semester ends, we will be able to remove all 3 of these assumptions.
The next problem will show you how dot products help us remove the first
assumption.

Recall the set up to problem 2.17. We want to lower a box down a ramp
(which we will assume is frictionless). Gravity exerts a force of F = (0, —200) N.
If we apply no other forces to this system, then gravity will do work on the box
through a displacement of (6, —3) m. The work done by gravity will transfer
the potential energy of the box into kinetic energy (remember that work is a
transfer of energy). How much energy is transferred?

Problem 2.19‘ Find the amount of work done by the force F = (0, —200)

through the displacement d = (6, —3). Find this by doing the following:

1.

Find the projection of F onto d. This tells you how much force acts in
the direction of the displacement. Find the magnitude of this projection.

. Since work equals W = Fd, multiply your answer above by |CZ] .

Now compute F -d. You have just shown that W = F.dwhen F and d
are not in the same direction.

2.3 The Cross Product and Planes

The dot product gave us a way of multiplying two vectors together, but the
result was a number, not a vectors. We now define the cross product, which
will allow us to multiply two vectors together to give us another vector. We

were able to define the dot product in all dimensions. The cross product is only
defined in R3.

Definition 2.8: The Cross Product. The cross product of two vectors
@ = (uy,us,uz) and ¥ = (vq,va,v3) is a new vector @ x ¢. This new vector
is (1) orthogonal to both @ and ¥, (2) has a length equal to the area of the
parallelogram whose sides are these two vectors, and (3) points in the direction
your thumb points as you curl the base of your right hand from « to ¢. The
formula for the cross product is

- - —

i gk

U X U= (ugvg — ugva, —(u1v3 — uzvy), uve — ugvy) = det |u; wy us

v1 V2 U3

|Problem 2.20| Let @ = (1,-2,3) and 7 = (2,0, —1).

e Compute @ X ¥ and ¥ X 4. How are they related?

—

e Compute @ - (@& x ¥) and U - (@ x ¥). Why did you get the answer you got?

e Compute @ x (21). Why did you get the answer you got?

e Compute |@ x ¥]. Compute the area of the parallelogram formed by @ and

¥ using trigonometry and ||, |0], and the angle 6 between the two vectors.
Compare your answer with |@ x 9.

See 12.3: 24, 41-44.

This definition is not really a
definition. It is actually a theorem.
If you use the formula given as the
definition, then you would need to
prove the three facts. We have the
tools to give a complete proof of
(1) and (3), but we would need a
course in linear algebra to prove
(2). It shouldn’t be too much of a
surprise that the cross product is
related to area, since it is defined
in terms of determinants

See 12.4: 1-8.
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|Problem 2.21| Let P = (2,0,0), Q = (0,3,0), and R = (0,0,4). Find a
vector that orthogonal to both P_Q and PR. Then find the area of the triangle
PQR. Construct a 3D graph of this triangle.

‘Problem 2.22| Consider the vectors 7= (1,0,0), 27= (0,2,0), and 3k =
(0,0,3).

e Compute 7’ x 27 and 27" X 7.
e Compute 7' X 3k and 3k x 7.
e Compute 27" x 3k and 3k x 27.

Give a geometric reason as to why some vectors above have a plus sign, and
some have a minus sign.

We will now combine the dot product with the cross product to develop an
equation of a plane in 3D. Before doing so, let’s look at what information we
need to obtain a line in 2D, and a plane in 3D. To obtain a line in 2D, one way
is to have 2 points. The next problem introduces the new idea by showing you
how to find an equation of a line in 2D.

Problem 2.23 ‘ Suppose the point P = (1,2) lies on line L. Suppose that the
angle between the line and the vector 7 = (3,4) is 90° (whenever this happens
we say the vector 77 is normal to the line). Let @ = (z,y) be another point on

the line L. Use the fact that 7 is orthogonal to P_Q to obtain an equation of
the line L.

‘Problem 2.24‘ Let P = (a,b,c) be a point on a plane in 3D. Let @7 =
(A, B,C) be a normal vector to the plane (so the angle between the plane and
and 7 is 90°). Let Q = (z,y, 2) be another point on the plane. Show that an
equation of the plane through point P with normal vector 7 is

Alx—a)+B(y—b)+C(z—¢) =0.

‘Problem 2.25‘ Consider the three points P = (1,0,0),Q = (2,0,—1),R =
(0,1, 3). Find an equation of the plane which passes through these three points.
[Hint: first find a normal vector to the plane.]

‘ Problem 2.26| Consider the two planes x + 2y +3z =4 and 2x —y+ 2 = 0.

These planes meet in a line. Find a vector that is parallel to this line. Then
find a vector equation of the line.

‘ Problem 2.27‘ Find an equation of the plane containing the lines 7 (t) =
(1,3,0)t + (1,0,2) and 7 (¢) = (2,0,—-1)t + (2,3, 2).

See 12.4: 15-18.

See 12.3: 9-14.

See page 709.

See 12.5: 21-28.

See 12.5: 57-60.
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2.4 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to Brainhoney and download the quiz. Once you have taken
the quiz, you can upload your work back to brainhoney and then download the
key to see how you did. If you still need to work on mastering some of the ideas,
please do so and then demonstrate your mastery though the quiz corrections.
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Curves

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Be able to describe, graph, give equations of, and find foci for conic sections
(parabolas, ellipses, hyperbolas).

2. Model motion in the plane using parametric equations. In particular,
describe conic sections using parametric equations.

3. Find derivatives and tangent lines for parametric equations. Explain how
to find velocity, speed, and acceleration from parametric equations.

4. Use integrals to find the lengths of parametric curves.

You’'ll have a chance to teach your examples to your peers prior to the exam.

3.1 Conic Sections

Before we jump fully into R?, we need some good examples of planar curves
(curves in R?) that we’ll extend to object in 3D. These examples are conic
sections. We call them conic sections because you can obtain each one by
intersecting a cone and a plane (I'll show you in class how to do this). Here’s a
definition.

Definition 3.1. Consider two identical, infinitely tall, right circular cones placed
vertex to vertex so that they share the same axis of symmetry. A conic section
is the intersection of this three dimensional surface with any plane that does
not pass through the vertex where the two cones meet.

These intersections are called circles (when the plane is perpendicular to the
axis of symmetry), parabolas (when the plane is parallel to one side of one cone),
hyperbolas (when the plane is parallel to the axis of symmetry), and ellipses
(when the plane does not meet any of the three previous criteria).

The definition above provides a geometric description of how to obtain a
conic section from cone. We'll not introduce an alternate definition based on
distances between points and lines, or between points and points. Let’s start
with one you are familiar with.

Definition 3.2. Consider the point P = (a,b) and a positive number r. A circle
circle with center (a,b) and radius r is the set of all points @ = (x,y) in the
plane so that the segment P(Q has length r.

18
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Using the distance formula, this means that every circle can be written in
the form (x — a)? + (y — b)? = 2.

Problem 3.1| The equation 42 + 4y? + 62 — 8y — 1 = 0 represents a circle

(though initially it does not look like it). Use the method of completing the
square to rewrite the equation in the form (x —a)? + (y — b)? = 2 (hence telling
you the center and radius). Then generalize your work to find the center and
radius of any circle written in the form 2% 4+ y?> + Dx + Ey + F = 0.

3.1.1 Parabolas

Before proceeding to parabolas, we need to define the distance between a point
and a line.

Definition 3.3. Let P be a point and L be a line. Define the distance between
P and L (written d(P, L)) to be the length of the shortest line segment that
has one end on L and the other end on P. Note: This segment will always be
perpendicular to L.

Definition 3.4. Given a point P (called the focus) and a line L (called the
directrix) which does not pass through P, we define a parabola as the set of all
points @ in the plane so that the distance from P to @ equals the distance from

Q@ to L. The vertex is the point on the parabola that is closest to the directrix.

Problem 3.2| Consider the line L : y = —p, the point P = (0,p), and

another point @ = (z,y). Use the distance formula to show that an equation of

a parabola with directrix L and focus P is 22 = 4py. Then use your work to

explain why an equation of a parabola with directrix = —p and focus (p,0) is
2

y* = 4dpx.

Ask me about the reflective properties of parabolas in class, if I have not
told you already. They are used in satellite dishes, long range telescopes, solar
ovens, and more. The following problem provides the basis to these reflective
properties and is optional. If you wish to present it, let me know. I'll have you
type it up prior to presenting in class.

‘ Problem: Optional ‘ Consider the parabola 22 = 4py with directrix y = —p
and focus (0,p). Let @ = (a,b) be some point on the parabola. Let T be the
tangent line to L at point . Show that the angle between PQ and T is the
same as the angle between the line x = a and T'. This shows that a vertical ray
coming down towards the parabola will reflect of the wall of a parabola and
head straight towards the vertex.

The next two problems will help you use the basic equations of a parabola,
together with shifting and reflecting, to study all parabolas whose axis of
symmetry is parallel to either the z or y axis.

Problem 3.3 Once the directrix and focus are known, we can give an

equation of a parabola. For each of the following, give an equation of the
parabola with the stated directrix and focus. Provide a sketch of each parabola.

1. The focus is (0,3) and the directrix is y = —3.

2. The focus is (0,3) and the directrix is y = 1.

See page 658.

See 11.6: 9-14
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Problem 3.4| Give an equation of each parabola with the stated directrix

and focus. Provide a sketch of each parabola.
1. The focus is (2, —5) and the directrix is y = 3.

2. The focus is (1,2) and the directrix is z = 3.

Problem 3.5 Each equation below represents a parabola. Find the focus, See 11.6: 9-14

directrix, and vertex of each parabola, and then provide a rough sketch.

Problem 3.6 Each equation below represents a parabola. Find the focus,

directrix, and vertex of each parabola, and then provide a rough sketch.
1. y=—8x2+3

2. y=a?—4x+5

3.1.2 Ellipses

Definition 3.5. Given two points F} and Fy (called foci) and a fixed distance
d, we define an ellipse as the set of all points @) in the plane so that the sum of
the distances F1Q and F»(Q equals the fixed distance d. The center of the ellipse
is the midpoint of the segment F; F5. The two foci define a line. Each of the two
points on the ellipse that intersect this line is called a vertex. The major axis is
the segment between the two vertexes. The minor axis is the largest segment
perpendicular to the major axis that fits inside the ellipse.

We can derive an equation of an ellipse in a manner very similar to how
we obtained an equation of a parabola. The following problem will walk you
through this. We will not have time to present this problem in class. However,
if you would like to complete the problem and write up your solution on the
wiki, you can obtain presentation points for doing so. Let me know if you are
interested.

‘ Problem: Optional ‘ Consider the ellipse produced by the fixed distance d
and the foci F} = (¢,0) and Fy = (—¢,0). Let (a,0) and (—a,0) be the vertexes
of the ellipse.

1. Show that d = 2a by considering the distances from F; and F5 to the
point @ = (a,0).

2. Let Q = (0,b) be a point on the ellipse. Show that b? + ¢* = a? by
considering the distance between ) and each focus.

3. Let Q = (z,y). By considering the distances between @ and the foci, show
that an equation of the ellipse is
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4. Suppose the foci are along the y-axis (at (0,+c)) and the fixed distance d
is now d = 2b, with vertexes (0, +b). Let (a,0) be a point on the = axis
that intersect the ellipse. Show that we still have

22y

2Tr=h

but now we instead have a? + ¢2 = b2.

You’ll want to use the results of the previous problem to complete the
problems below. The key equation above is ﬁ—i + 3;)’—3 = 1. The foci will be on
the z-axis if @ > b, and will be on the y-axis if b > a. The second part of the
problem above shows that the distance from the center of the ellipse to the
vertex is equal to the hypotenuse of a right triangle whose legs go from the
center to a focus, and from the center to an end point of the minor axis.

The next three problems will help you use the basic equations of an ellipse,
together with shifting and reflecting, to study all ellipses whose major axis is
parallel to either the z- or y-axis.

Problem 3.7| For each ellipse below, graph the ellipse and give the coordi- See 11.6: 17-24

nates of the foci and vertexes.
1. 162% + 25y = 400 [Hint: divide by 400.]

) B 2

Problem 3.8 For the ellipse 22 + 22 + 2y? — 8y = 9, sketch a graph and

give the coordinates of the foci and vertexes.

Problem 3.9| Given an equation of each ellipse described below, and provide

a rough sketch.
1. The foci are at (2 +3,1) and vertices at (2 £5,1).
2. The foci are at (—1,3 £ 2) and vertices at (—1,3 £5).

Ask me about the reflective properties of an ellipse in class, if I have not
told you already. The following problem provides the basis to these reflective
properties and is optional. If you wish to present it, let me know. I’ll have you
type it up prior to presenting in class.

‘Problem: Optional‘ Consider the ellipse f—i + g—z = 1 with foci Fy = (c,0)
and Fy = (—¢,0). Let @ = (z,y) be some point on the ellipse. Let T be the
tangent line to the ellipse at point (). Show that the angle between F1Q and T
is the same as the angle between F5Q and 7. This shows that a ray from F}
to @ will reflect off the wall of the ellipse at Q and head straight towards the
other focus F5.

See 11.6: 25-26
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3.1.3 Hyperbolas

Definition 3.6. Given two points F; and Fy (called foci) and a fixed number d,
we define a hyperbola as the set of all points @ in the plane so that the difference
of the distances F1Q and F>(@Q equals the fixed number d or —d. The center
of the hyperbola is the midpoint of the segment F}F,. The two foci define a
line. Each of the two points on the hyperbola that intersect this line is called a
vertex.

We can derive an equation of a hyperbola in a manner very similar to how
we obtained an equation of an ellipse. The following problem will walk you
through this. We will not have time to present this problem in class.

‘ Problem: Optional ‘ Consider the hyperbola produced by the fixed number
d and the foci F; = (¢,0) and F» = (—¢,0). Let (a,0) and (—a,0) be the
vertexes of the hyperbola.

1. Show that d = 2a by considering the difference of the distances from F}
and F» to the vertex (a,0).

2. Let @ = (x,y) be a point on the hyperbola. By considering the difference
of the distances between () and the foci, show that an equation of the

2
hyperbola is 2—2 — 24— =1, or if we let ¢* —a® = b?, then the equation is

2 2
L !
a b2

3. Suppose the foci are along the y-axis (at (0,+c)) and the number d is now
d = 2b, with vertexes (0,£b). Let a? = ¢ — b%. Show that an equation of

the hyperbola is
g2 22

2 a2

You’ll want to use the results of the previous problem to complete the
problems below.

Problem 3.10‘ Consider the hyperbola ;”—z - %—; = 1. Construct a box
centered at the origin with corners at (a, £b) and (—a, £b). Draw lines through
the diagonals of this box. Rewrite the equation of the hyperbola by solving for
y and then factoring to show that as = gets large, the hyperbola gets really close
to the lines y = :t%x. [Hint: rewrite so that you obtain y = :tgx\/something].
These two lines are often called oblique asymptotes.

N

Now apply what you have just done to sketch the hyperbola ;—; — % =1
and give the location of the foci.

The next three problems will help you use the basic equations of a hyperbola,
together with shifting and reflecting, to study all ellipses whose major axis is
parallel to either the z- or y-axis.

Problem 3.11 ‘ For each hyperbola below, graph the hyperbola (include the
box and asymptotes) and give the coordinates of the foci and vertexes.

1. 1622 — 25y* = 400 [Hint: divide by 400.]

(z-1?% (y=2?° _
2 - =

See 11.6: 27-34

See 11.6: 27-34
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‘ Problem 3.12| For the hyperbola z2 + 22 — 2y? + 8y = 9, sketch a graph
(include the box and asymptotes) and give the coordinates of the foci and
vertexes.

‘ Problem 3.13| Given an equation of each hyperbola described below, and See 11.6: 35-38
provide a rough sketch.

1. The vertexes are at (2+3,1) and foci at (2+5,1).
2. The vertexes are at (—1,3 £2) and foci at (—1,3 £ 5).

Ask me about the reflective properties of a hyperbola in class, if I have not
told you already. In particular, we can discuss lasers and long range telescopes.
The following problem provides the basis to these reflective properties and is
optional. If you wish to present it, let me know. I’ll have you type it up prior
to presenting in class.

2

‘Problem: Optional‘ Consider the hyperbola %7 — %—z = 1 with foci F} =
(¢,0) and F» = (—¢,0). Let Q = (x,y) be a point on the hyperbola. Let T be
the tangent line to the hyperbola at point (). Show that the angle between F1Q
and T is the same as the angle between F>() and T. This shows that if you
begin a ray from a point in the plane and head towards F; (where the wall of
the hyperbola lies between the start point and Fj), then when the ray hits the
wall at @, it reflects off the wall and heads straight towards the other focus F5.

3.2 Parametric Equations

In middle school, you learned to write an equation of a line as y = ma + b. In
the vector unit, we learned to write this in vector form as (z,y) = (1,m)t+(0,b).
The equation to the left is called a vector equation. It is equivalent to writing
the two equations

r=1t+0,y =mt+0,

which we will call parametric equations of the line. We were able to quickly
develop equations of lines in space, by just adding a third equation for z.

Parametric equations provide us with a way of specifying the location (z,y, 2)
of an object by giving an equation for each coordinate. We will use these
equations to model motion in the plane and in space. In this section we’ll focus
mostly on planar curves.

Definition 3.7. If each of f and ¢ are continuous functions, then the curve in
the plane defined by x = f(t),y = g(¢) is called a parametric curve, and the
equations z = f(t),y = g(t) are called parametric equations for the curve. You
can generalize this definition to 3D and beyond by just adding more variables.

Problem 3.14 ‘ By plotting points, construct graphs of the three parametric See 11.1: 1-18. This is the same
curves given below (just make a ¢, x,y table, and then plot the (z, %) coordinates). for all the problems below.
Place an arrow on your graph to show the direction of motion.

1. © =cost,y =sint, for 0 <t < 2.
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2. x =sint,y = cost, for 0 <t < 2.

3. x =cost,y =sint,z =t, for 0 <t < 4m.

Problem 3.15| Plot the path traced out by the parametric curve x = 1 +

2cost,y = 3+ bsint. Then use the trig identity cos®t 4+ sin®¢ = 1 to give a
Cartesian equation of the curve (an equation that only involves x and y). What
are the foci of the resulting object (it’s a conic section).

‘Problem 3.16‘ Find parametric equations for a line that passes through
the points (0,1,2) and (3, —2,4).

‘Problem 3.17‘ Plot the path traced out by the parametric curve 7(t) =
(t2 + 1,2t — 3). Give a Cartesian equation of the curve (eliminate the parameter
t), and then find the focus of the resulting curve.

‘ Problem 3.18 ‘ Consider the parametric curve given by x = tant,y = sect.
Plot the curve for —7/2 < t < w/2. Give a Cartesian equation of the curve (a
trig identity will help). Then find the foci of the resulting conic section. [Hint:
this problem will probably be easier to draw if you first find the Cartesian
equation, and then plot the curve.]

3.2.1 Derivatives and Tangent lines

We’re now ready to discuss calculus on parametric curves. The derivative of
a vector valued function is defined using the same definition as first semester
calculus.

Definition 3.8. If 7#(t) is a vector equation of a curve (or in parametric form
just & = f(t),y = g(t)), then we define the derivative to be
dr F(t+ h) — 7t
ar_ oy, TR 7).
dt h—0 h
The subtraction above requires vector subtraction. The following problem
will provide a simple way to take derivatives which we will use all semester long.

‘Problem 3.19‘ Show that if 7(t) = (f(t),g(t)), then the derivative is just

4% = (f'(t),¢'(t)). In other words, you can take the derivative by just differenti-

ating each component separately.

‘ Problem 3.20 ‘ Consider the parametric curve given by 7(t) = (3 cost, 3sint).

a7 d>7
1. Compute 97 and 7.

2. Construct a graph of the curve given by 7.

3. On your graph, draw the vectors i—f (%) and %f (%) with their tail placed

). These vectors represent the velocity and acceleration

us

on the curve at 7 ( 7}

vectors.

What we did in the previous
chapter should help here.

See page 728.

See 13.1:5-8 and 13.1:19-20
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s

4. Give a vector equation of the tangent line to this curve at ¢t = 7.

Definition 3.9. If an object moves along a path 7(¢), we can find the velocity
and acceleration by just computing the first and second derivatives. The velocity
is ‘;—’: , and the acceleration is %;? . Speed is a scalar, not a vector. The speed of
an object is just the length of the velocity vector.

Problem 3.21| Consider the curve 7(t) = (2t + 3,4(2t — 1)?).

1. Construct a graph of 7 for 0 <t < 2.

2. If this curve represented the path of a horse running through a pasture,
find the velocity of the horse at any time ¢, and then specifically at ¢t = 1.
What is the horse’s speed at t = 17

3. Find a vector equation of the tangent line to 7 at ¢ = 1. Include this on
your graph.

dy
d =2d

4. Show that the slope of the line is d£|"_5 = @‘
T T

@
dt lt=1

3.2.2 Arc Length

If an object moves at a constant speed, then the distance travelled is
distance = speed X time.

This requires that the speed be constant. What if the speed is not constant?
Over a really small time interval dt, the speed is almost constant, so we can
still use the idea above. The following problem will help you develop the key
formula for arc length.

Problem 3.22: Derivation of the arc length formula‘ Suppose an ob-
ject moves along the path given by 7(¢) = (z(t), y(t)) for a <t < b.

de\?  (dy\?
1. Show that the object’s speed at any time ¢t is \/(da;> + <d?z> .

2. If you move over a really small time interval, say of length dt, then the
speed is almost constant. Give a formula for the small distance ds you
have travelled through a small time dt, provided you are moving at the
speed given above.

3. Explain why the length of the path given by 7 is

= for= il L) ()

d
dt

2

3t
Problem 3.23‘ Find the length of the curve 7(t) = (tS, 2) for t € [1, 3].

The notation ¢ € [1,3] means 1 < ¢ < 3.

This is the arc length formula.

See 11.2: 25-30
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Problem 3.24‘ Set up an integral formula which would give the length of

the following curves. Sketch the curve. Do not worry about integrating them. The reason I don’t want you to
actually compute the integrals is

1. The parabola p(t) = (¢, t2) for t € [0, 3]. that they will get ugly really fast.
Try doing one in Wolfram Alpha
2. The ellipse é(t) = (4cost,5sint) for t € [0, 27]. and see what the computer gives.

3. The hyperbola h(t) = (tant,sect) for t € [—m /4,7 /4].

To actually compute the integrals above and find the lengths, we would use
a numerical technique to approximate the integral (something akin to adding
up the areas of lots and lots of rectangles as you did in first semester calculus).

3.3 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to Brainhoney and download the quiz. Once you have taken
the quiz, you can upload your work back to brainhoney and then download the
key to see how you did. If you still need to work on mastering some of the ideas,
please do so and then demonstrate your mastery though the quiz corrections.



Chapter 4

New Coordinates

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Be able to convert between rectangular and polar coordinates in 2D.
Convert between rectangular and cylindrical or spherical in 3D.

2. Graph polar functions in the plane. Find intersections of polar equations,
and illustrate that not every intersection can be obtained algebraically
(you may have to graph the curves).

3. Find derivatives and tangent lines in polar coordinates.
4. Find area and arc length using polar equations.

You’ll have a chance to teach your examples to your peers prior to the exam.

4.1 Polar Coordinates

Up to now, we most often give the location of a point (or coordiantes of a vector)
by stating the (z,y) coordinates. These are called the Cartesian (or rectangular)
coordinates. Some problems are much easier to work with if we know how far a
point is from the origin, together with the angle between the z-axis and a ray
from the origin to the point.

Problem 4.1 There are two parts to this problem.

1. Consider the point P with Cartesian (rectangular) coordinates (2,1). Find
the distance r from P to the origin. Consider the ray OP from the origin
through P. Find an angle between OP and the z-axis.

2. Suppose that a point @ = (a,b) is 6 units from the origin, and the angle
the ray OP makes with the x-axis is m/4 radians. Find the Cartesian
(rectangular) coordinates (a,b) of Q.

Definition 4.1. Let @ be be a point in the plane with Cartesian coordinates
(z,y). Let O = (0,0) be the origin. We define the polar coordinates of @ to be
the ordered pair (r,#) where r is the displacement from the origin to @, and 6
is an angle of rotation (counter-clockwise) from the z-axis to the ray OP.

27

See 11.3:5-10.
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Problem 4.2| The following points are given using their polar coordinates.

Plot the points in the Cartesian plane, and give the Cartesian (rectangular)
coordinates of each point. The points are

1,7), (3, 52) : (—3, %) , and (—2, —%) .

The next problem provides general formulas for converting between the
Cartesian (rectangular) and polar coordinate systems.

Problem 4.3| Suppose that @ is a point in the plane with Cartesian coor-

dinates (z,y) and polar coordinates (r,#). Write formulas for x and y in terms
of r and 6. Then write a formula to find the distance r from @ to the origin (in
terms of x and y) as well as a formula to find the angle 6 between the z-axis and
a line connecting @ to the origin. [Hint: A picture of a triangle will help here.]

In problem 4.3, you should have obtained the equations
xr=rcosf, y=rsind.

rcosf
7 sin 6
equation in which you input polar coordinates (r,0) and get out Cartesian
coordinates (z,y). So you input one thing to get out one thing, which means
that we have a function. We could write T'(r,8) = (r cos 6,7 sin ), where we’ve
used the letter T as the name of the function because it is a transformation
between coordinate systems. To emphasize that the domain and range are both
two dimensional systems, we could also write 7" : R? — R2. In the next chapter,
we’ll spend more time with this notation. The following problem will show
you how to graph a coordinate transformation. When you’re done, you should
essentially have polar graph paper.

We can write this in vector notation as (;) = ( ) This is a vector

Problem 4.4 Consider the coordinate transformation
T(r,0) = (rcos®,rsinf).

1. Let r = 3 and then graph T(3,6) = (3cos 0, 3sin6) for 6 € [0, 27].

2. Let & = 7 and then, on the same axes as above, add the graph of

f(r,%) = (r@,r?) for r € [0, 5].

3. To the same axes as above, add the graphs of T(1,6),7(2,6),T(4,6) for
0 € [0,2x] and T'(r,0), T (r,7/2),T(r,37/4), T (r,m) for r € [0,5].

Problem 4.5| In the plane, graph the curve y = sinz for = € [0, 27| and the

curve r = siné for 6 € [0, 27] (just make an r, 6 table).

Problem 4.6| Each of the following equations is written in the Cartesian

(rectangular) coordinate system. Convert each to an equation in polar coordi-
nates, and then solve for r so that the equation is in the form r = f(6).

122 +y? =7

See 11.3:5-10.

See page 647.

For this problem, you are just
drawing many parametric curves.
This is what we did in the
previous chapter.

See 11.3: 53-66.
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2. 20 +3y=>5

3. 22=y

Problem 4.7 Each of the following equations is written in the polar coor- See 11.3: 27-52. I strongly suggest

dinate system. Convert each to an equation in the Cartesian coordinates. thatt}’ou do many of these as
practice.
1. »=9cosf
9 4
=
2cos @ + 3sinf
3. 0=3m/4

4.1.1 Graphing and Intersections

To construct a graph of a polar curve, just create an r, 8 table. Choose values for
0 that will make it easy to compute any trig functions involved. Then connect
the points in a smooth manner, making sure that your radius grows or shrinks
appropriately as your angle increases.

Problem 4.8| Graph the polar curve r = 2 4+ 2 cos 6. See 11.4: 1-20.

Problem 4.9 | Graph the polar curve r = 2sin 36.

‘ Problem 4.10‘ Graph the polar curve r = 3 cos 26.

‘Problem 4.11 ‘ Find the points of intersection of r = 3 — 3cosf and r =
3cosf. (If you don’t graph the curves, you’ll probably miss a few points of
intersection.)

‘ Problem 4.12 ‘ Find the points of intersection of r = 2co0s260 and r = V3.
(If you don’t graph the curves, you'll probably miss a few points of intersection.)

4.1.2 Calculus with Polar Coordinates

Recall that for parametric curves 7(t) = (z(t), y(t)), to find the slope of the

curve we just compute
dy  dy/dt
dr  dx/dt’

A polar curve of the form r = f(#) can be thought of as just the parametric
curve (z,y) = (f(0) cos @, f(0)sinh). So you can find the slope by computing

dy  dy/do

de  dx/df’
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Problem 4.13 ‘ Consider the polar curve r = 1+ 2cosf. (It wouldn’t hurt See 11.2: 1-14.
to provide a quick sketch of the curve.)

1. Compute both dx/df and dy/d#.

2. Find the slope dy/dx of the curve at § = 7/2.

3. Give both a vector equation of the tangent line, and a Cartesian equation
of the tangent line at 6 = 7/2.

We showed in the curves section that you can find arc length for parametric
curves using the formula

-GG

If we replace t with 6, this becomes a formula for arc length in polar coordinates.
However, the formula can be simplified.

‘Problem 4.14‘ Recall that © = rcosf and y = rsinf. Suppose that See 11.5: 29.
r = f(0) for 6 € [«, 8] is a continuous function, and that f’ is continuous. Show
that the arc length formula can be simplified to

VG G - ()

[Hint: the product rule and Pythagorean identity will help.]

‘ Problem 4.15| Set up (do not evaluate) an integral formula to compute the See 11.5: 21-28.
length of

1. the rose r = 2cos 36, and

2. the rose r = 3sin 26.

Problem 4.16| In this problem, you will develop a formula for finding area See page 653.
inside a polar curve.

1. Consider a circle of radius 7. The area inside the circle is 7772, This is the
area inside when you traverse around the circle for a full 27 radians. Fill
in the following table by finding the pattern that connects angle traversed
to area inside.

Angle traversed | Area inside
21 A=qr?
0
/2
/4
de dA =

2. Explain why the area inside a polar curve r = f(0) for a <0 < 3 is

A1
A:/dA:/ §r2d9.

What must be true about the curve r = f(6) for this formula to be valid?
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Problem 4.17| Find the area inside of the polar curve r = sinf. [Hint: See 11.5: 1-20.
Construct a graph to determine the appropriate bounds for the integral. When
you integrate, you’ll need to use the half angle identity.]

Problem 4.18| Set up (do not evaluate) an integral to compute the area

1. inside the cardioid r = 2 + 2sin 6, and

2. inside the circle » = 3 cos 6.

Problem 4.19| Set up (do not evaluate) an integral formula to compute the
area that lies inside both r =2 — 2cos 8 and r = cos 6. Sketch both curves.

4.2 Other Coordinate Systems

In this chapter, we’ve introduced just one of many different coordinate systems
that people have used over the centuries. Sometimes a problem can’t be solved
until the correct coordinate system is chosen. Problem 4.4 showed you how to
graph the coordinate transformation given by polar coordinates. The following
problem shows you how to graph in a different coordinate system.

‘ Problem 4.20 ‘ Consider the coordinate transformation T'(a,w) = (a cosw, a® sinw).

1. Let @ = 3 and then graph the curve T(3,w) = (3cosw, 9sinw) for w € See Sage. Click on the link to see

[07 27‘-]. how to check your answer in Sage.
2. Let & = 7 and then, on the same axes as above, add the graph of See Sage. Notice that you can add

= T\ V2 2432 the two plots together to

T (aa Z) = ((IT, a 7) fora € [07 4]' superimpose them on each other.

— —

3. To the same axes as above, add the graphs of f(l, w),T(2,w),T(4,w) for Use Sage to check your answer.
w € [0,2n] and T(a,0), T(a,7/2), T(a, —7/6) for a € [0,4].

[Hint: when you’re done, you should have a bunch of parabolas and ellipses.]

In 3 dimensions, the most common coordinate systems are cylindrical and
spherical. The equations for these coordinate systems are in the table below.

Cylindrical Coordinates Spherical Coordinates

T =rcosf T = psin¢cosf
y = rsinf y = psin¢sinf
z=2z zZ = pcos ¢

Problem 4.21| Let P = (x,y,z) be a point in space. This point lies on a See page 893.
cylinder of radius r, where the cylinder has the z axis as its axis of symmetry.

The height of the point is z units up from the zy plane. The point casts a

shadow in the zy plane at @ = (x,y,0). The angle between the ray O_Q and the

z-axis is . Construct a graph in 3D of this information, and use it to develop

the equations for cylindrical coordinates given above.



http://aleph.sagemath.org/?z=eJwti7sKwCAMAHe_IjglkqHY2b9wbgkiJVAfqP9PB7vdHVxE4VbyIxRQXGoTtzHI5d3U-juZPrQusBElnAQ6LcNm02VIyWtouvvbFu7MsFeGg8G7rkQfMv4giA
http://aleph.sagemath.org/?z=eJxlzEEKg0AMBdC9pwiukmmgRd3OLVxbgkgJqBNm5v5UTGmF7vKT9zOicNqWl1BECXMq6IlBpi4U3T-ZGsu6V2hHlNgTaGkZfP5dThpN78MXXFaNSZZtqVnnp62potcZHDE8GLpgSgQ3-LeXT0fF-UD0BkVHOdw
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‘Problem 4.22‘ Let P = (z,y, z) be a point in space. This point lies on a

sphere of radius p (“rho”), where the sphere’s center is at the origin O = (0,0, 0).

The point casts a shadow in the xy plane at @ = (z,y,0). The angle between
the ray O_Q and the z-axis is €, and is called the azimuth angle. The angle
between the ray OP and the z axis is ¢ (“phi”), and is called the inclination
angle, polar angle, or zenith angle. Construct a graph in 3D of this information,
and use it to develop the equations for spherical coordinates given above.

There is some disagreement between different fields about the notation for
spherical coordinates. In some fields (like physics), ¢ represents the azimuth
angle and 6 represents the inclination angle. In some fields, like geography,
instead of the inclination angle, the elevation angle is given—the angle from
the xy-plane (lines of lattitude are from the elevation angle). Additionally,
sometimes the coordinates are written in a different order. You should always
check the notation for spherical coordinates before communicating using them.

4.3 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to Brainhoney and download the quiz. Once you have taken
the quiz, you can upload your work back to brainhoney and then download the
key to see how you did. If you still need to work on mastering some of the ideas,
please do so and then demonstrate your mastery though the quiz corrections.

See page 897.

See the Wikipedia or MathWorld
for a discussion of conventions in
different disciplines.


http://en.wikipedia.org/wiki/Spherical_coordinate_system
http://mathworld.wolfram.com/SphericalCoordinates.html

Chapter 5

Functions

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Describe uses for, and construct graphs of, space curves and parametric
surfaces. Find derivatives of space curves, and use this to find velocity,
acceleration, and find equations of tangent lines.

2. Describe uses for, and construct graphs of, functions of several variables.
For functions of the form z = f(x,y), this includes both 3D surface plots
and 2D level curve plots. For functions of the form w = f(z,y, ), construct
plots of level surfaces.

3. Describe uses for, and construct graphs of, vector fields and transforma-
tions.

4. If you are given a description of a vector field, curve, or surface (instead
of a function or parametrization), explain how to obtain a function for the
vector field, or a parametrization for the curve or surface.

You’ll have a chance to teach your examples to your peers prior to the exam.

5.1 Function Terminology

A function is a set of instructions involving two sets (called the domain and
codomain). A function assigns to each element of the domain D exactly one
element in the codomain R. We'll often refer to the codomain R as the target
space. We'll write

f:D—>R

when we want to remind ourselves of the domain and target space. In this class,
we will study what happens when the domain and target space are subsets of
R™ (Euclidean n-space). In particular, we will study functions of the form

fiR" > R™,

when m and n are 3 or less. The value of n is the dimension of the input vector
(or number of inputs). The number m is the dimension of the output vector (or
number of outputs). Our goal is to understand uses for each type of function,
and be able to construct graphs to represent the function.

We will focus most of our time this semester on two- and three-dimensional
problems. However, many problems in the real world require a higher number of

33
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dimensions. When you hear the word “dimension”, it does not always represent
a physical dimension, such as length, width, or height. If a quantity depends
on 30 different measurements, then the problem involves 30 dimensions. As a
quick illustration, the formula for the distance between two points depends on 6
numbers, so distance is really a 6-dimensional problem. As another example, if
a piece of equipment has a color, temperature, age, and cost, we can think of
that piece of equipment being represented by a point in four-dimensional space
(where the coordinate axes represent color, temperature, age, and cost).

A pebble falls from a 64 ft tall building. Its height (in ft) above

the ground t seconds after it drops is given by the function y = f(t) = 64 — 16¢>.
What are n and m when we write this function in the form f: R™ — R™?
Construct a graph of this function. How many dimensions do you need to graph
this function?

5.2 Parametric Curves: f R — R™

Problem 5.2 | A horse runs around an elliptical track. Its position at time ¢

is given by the function 7(¢) = (2cost, 3sint). We could alternatively write this
as x = 2cost,y = 3sint.

1. What are n and m when we write this function in the form 7: R® — R™?
2. Construct a graph of this function.

3. Next to a few points on your graph, include the time ¢ at which the horse
is at this point on the graph. Include an arrow for the horse’s direction.

4. How many dimensions do you need to graph this function?

Notice in the problem above that we placed a vector symbol above the
function name, as in 7: R — R™. When the target space (codomain) is 2-
dimensional or larger, we place a vector above the function name to remind us
that the output is more than just a number.

Problem 5.3 | Consider the pebble from problem 5.1. The pebble’s height

was given by y = 64 — 16t2. The pebble also has some horizontal velocity (it’s
moving at 3 ft/s to the right). If we let the origin be the base of the 64 ft building,
then the position of the pebble at time ¢ is given by 7(t) = (3t, 64 — 16t2).

1. What are n and m when we write this function in the form 7: R™® — R™?

2. At what time does the pebble hit the ground (the height reaches zero)?
Construct a graph of the pebble’s path from when it leaves the top of the
building till when it hits the ground.

3. Find the pebble’s velocity and acceleration vectors at ¢ = 1?7 Draw these
vectors on your graph with their base at the pebble’s position at t = 1.

4. At what speed is the pebble moving when it hits the ground?

In the next problem, we keep the input as just a single number ¢, but the
output is now a vector in R3.

See Sage or Wolfram Alpha.
Follow the links to Sage or
Wolfram Alpha in all the problems
below to see how to get the
computer to graph the function.

See Sage or Wolfram Alpha. See
also Chapter 3 of this problem set.
There’s a lot more practice of this
idea in 11.1. You’ll also find more
practice in 13.1: 1-8.

See Sage or Wolfram Alpha. The
text has more practice in 13.1:
1-8.

See Section 3.2.1 and
Definition 3.9.


http://aleph.sagemath.org/?z=eJwrsS1LLNJQL1HXtOYqyMkv0TAz0TU00yqJM9JR0CjRMdAx0tQEAL5TCVo
http://wolfr.am/xoc07E
http://aleph.sagemath.org/?z=eJwrsS1LLNJQL1HX5CpILErMTS0pykyOL8jJL9GINtJKzi_WKNHUUTDWKs7MA7JidRQ0SnQMdIy0CjI1NQFWdRJT
http://wolfr.am/wAkR8l
http://aleph.sagemath.org/?z=eJwNxksKgCAUBdB5q3Dmh2eQfWZuJXmIgpAodtt_Dg6crKC92g1IXIfdLoPb6aXz4JowSgz9aVCZhAJZt540aRL89hQRBqM0L_lDq7NR6h-iAhhm
http://wolfr.am/ynm3kD
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Problem 5.4| A jet begins spiraling upwards to gain height. The position of

the jet after ¢ seconds is modeled by the equation #(t) = (2cost,2sint,t). We
could alternatively write this as x = 2cost, y = 2sint, z = t.

1. What are n and m when we write this function in the form 7: R — R™?

2. Construct a graph of this function by picking several values of ¢ and
plotting the resulting points (2 cost,2sint,t).

3. Next to a few points on your graph, include the time ¢ at which the jet is
at this point on the graph. Include an arrow for the jet’s direction.

4. How many dimensions do you need to graph this function?

In all the problems above, you should have noticed that in order to draw
a function (provided you include arrows for direction, or use an animation to
represent “time”), you can determine how many dimensions you need to graph
a function by just summing the dimensions of the domain and codomain. This
is true in general.

Use the same set up as problem 5.4, namely
7(t) = (2cost,2sint, t).
You’ll need a graph of this function to complete this problem.
1. Find the first and second derivative of 7(¢).

2. Compute the velocity and acceleration vectors at t = /2. Place these
vectors on your graph with their tails at the point corresponding to ¢t = /2.

3. Give an equation of the tangent line to this curve at ¢ = 7/2.

5.3 Parametric Surfaces: f ' R? —» R3

We now increase the number of inputs from 1 to 2. This will allow us to graph
many space curves at the same time.

Problem 5.6 The jet from problem 5.4 is actually accompanied by several

jets flying side by side. As all the jets fly, they leave a smoke trail behind them
(it’s an air show). The smoke from one jet spreads outwards to mix with the
neighboring jet, so that it looks like the jets are leaving a rather wide sheet
of smoke behind them as they fly. The position of two of the many other jets
is given by 75(t) = (3cost,3sint, t) and 74(t) = (4cost,4sint,t). A function
which represents the smoke stream is 7(a,t) = (acost,asint, t) for 0 < ¢t < 4rx
and 2 < a < 4.

1. What are n and m when we write the function 7(a,t) = (acost,asint,t)
in the form 7: R* — R™?

2. Start by graphing the position of the three jets 7(2,t) = (2 cost, 2sint, t),
7(3,t) = (3cost,3sint,t) and 7(4,t) = (4 cost,4sint,t).

3. Let t = 0 and graph the curve r(a,0) = (a,0,0) for a € [2,4]. Then repeat
this for ¢ = 7/2, 7, 37/2.

4. Describe the resulting surface.

See Sage or Wolfram Alpha. The
text has more practice in 13.1:
9-14.

See Section 3.2.1 and
Definition 3.9.

The text has more practice in 13.1:
19-22.

See Sage or Wolfram Alpha.


http://aleph.sagemath.org/?z=eJxL0yjRtNUw0krOLwaydBSMtIoz88CsEk2ugsSixNzUkqLM5PiCnPwSjTQdBY0SHQMdBROtgkxNTQAYOxGO
http://www.wolframalpha.com/input/?i=parametric+plot+3D++%282+cos+t%2C+2+sin+t%2C+t%29+for+t+from+0+to+4+pi
http://aleph.sagemath.org/?z=eJxL0yjRUUjUtNVI1ErOL9Yo0QTytIoz88CsEk2ugsSixNzUkqLM5PiCnPwSjTQdBaAOAx0FE62CTKASjUQdBSMgT1OTCwBCiRSf
http://www.wolframalpha.com/input/?i=parametric+plot+3D++%28a+cos+t%2C+a+sin+t%2C+t%29+for+t+from+0+to+4+pi+and+a+from+2+to+4
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The function above is called a parametric surface. Parametric surfaces are
formed by joining together many parametric space curves. Most of 3D computer
animation is done using parametric surfaces. Woody’s entire body in Toy Story
is a collection of parametric surfaces. Car companies create computer models of
vehicles using parametric surfaces, and then use those parametric surfaces to
study collisions. Often the mathematics behind these models is hidden in the
software program, but parametric surfaces are at the heart of just about every
3D computer model.

Problem 5.7 | Consider the parametric surface 7(u,v) = (u cosv, usinv, u?)

for 0 <u <3 and 0 < v <27 Construct a graph of this function. To do so, let

u equal a constant (such as 1, 2, 3) and then graph the resulting space curve.

Then let v equal a constant (such as 0, w/2, etc.) and graph the resulting space
curve until you can visualize the surface. [Hint: Think satellite dish.]

5.4 Functions of Several Variables: f: R” — R

In this section we’ll focus on functions of the form f: R? — R! and f: R® — RY;
we’ll keep the output as a real number. In the next problem, you should notice
that the input is a vector (z,y) and the output is a number z. There are two
ways to graph functions of this type. The next two problems show you how.

Problem 5.8 A computer chip has been disconnected from electricity and

sitting in cold storage for quite some time. The chip is connected to power, and
a few moments later the temperature (in Celsius) at various points (x,y) on
the chip is measured. From these measurements, statistics is used to create a
temperature function z = f(z,y) to model the temperature at any point on the
chip. Suppose that this chip’s temperature function is given by the equation
2= f(x,y) =9 — 22 — y%. We'll be creating a 3D model of this function in this
problem, so you’ll want to place all your graphs on the same z,y, z axes.

1. What is the temperature at (0,0), (1,2), and (—4,3)?

2. If you let y = 0, construct a graph of the temperature z = f(z,0) =
9 — 22 — 0% or just z =9 — 22. In the zz plane (where y = 0) draw this
upside down parabola.

3. Now let z = 0. Draw the resulting parabola in the yz plane.
4. Now let z = 0. Draw the resulting curve in the xy plane.

5. Once you've drawn a curve in each of the three coordinate planes, it’s
useful to pick an input variable (either = or y) and let it equal various
constants. So now let x = 1 and draw the resulting parabola in the plane
x = 1. Then repeat this for z = 2.

6. Describe the shape. Add any extra features to your graph to convey the
3D image you are constructing.

Problem 5.9| We'll be using the same function z = f(z,y) = 9 — 22 — y? as

the previous problem. However, this time we’ll construct a graph of the function
by only studying places where the temperature is constant. We’ll create a graph
in 2D of the surface (similar to a topographical map).

See Sage or Wolfram Alpha.

See Sage or Wolfram Alpha.

See 14.1: 1-4.

See 14.1: 37-48.

See Sage or Wolfram Alpha.


http://aleph.sagemath.org/?z=eJxL0yjVUSjTtNUo1UrOL9Yo09RRKNUqzsyDsOKMNLkKEosSc1NLijKT4wty8ks00nQUQHoMdBRMgEo0ynQMdIy0CjI1NQFPyxVa
http://wolfr.am/A90cfW
http://aleph.sagemath.org/?z=eJxL06jQqdS0tdStiDPSrYwz4irIyS8xTtFI01EAyuga6xhrAlmVEJYmADAVC84
http://wolfr.am/wny0IF
http://aleph.sagemath.org/?z=eJydj81qwzAQhO9-iiWXWCCHJqbQHHTtExR6KI1RnBVWWWuNVibR21fOH_Ta2-7M7PCtqy86K7NvLoddkw-7aiJO7al2GorTtLpVZcq3SW1k4HOtqiGNVK8-EZY0pDPDyTuHEUMCSZlQgB30HBLP8RoSEIbMM_Q2gCCWdcQllAb8EwSekucgm5Wq7nq36IXoCfTg0Y9LMV8veqtf9Zvefy8qcTzaaD7ijLof7WTWP5jWT_7_FpM9IsmtFpwnMu-WBPVV73wgH_DuWpmwT1205RuzVdUvSwN0NA
http://wolfr.am/wny0IF
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1. Which points in the plane have zero temperature? Just let z = 0 in
2z =9 — 22 — y2. Plot the corresponding points in the zy-plane, and write
z = 0 next to this curve. This curve is called a level curve. As long as you
stay on this curve, your temperature will remain level, it will not increase
nor decrease.

2. Which points in the plane have temperature z = 57 Add this level curve
to your 2D plot and write z = 5 next to it.

3. Repeat the above for z =8, 2 =9, and z = 1. What’s wrong with letting
z =107

4. Using your 2D plot, construct a 3D image of the function by lifting each
level curve to its corresponding height.

Definition 5.1. A level curve of a function z = f(z,y) is a curve in the zy-plane
found by setting the output z equal to a constant. Symbolically, a level curve
of f(z,y) is the curve ¢ = f(x,y) for some constant c. A 2D plot consisting of
several level curves is called a contour plot of z = f(x,y).

‘ Problem 5.10‘ Consider the function f(z,y) = r — y>.

1. Construct a 3D surface plot of f. [So just graph in 3D the curves given by
x =0 and y = 0 and then try setting = or y equal to some other constants,
likex=1,2=2y=1, y=2, etc.]

2. Construct a contour plot of f. [So just graph in 2D the curves given by
setting z equal to a few constants, like z =0, z =1, z = —4, etc/]

3. Which level curve passes through the point (2,2)? Draw this level curve
on your contour plot.

Notice that when we graphed the previous two functions (of the form z =
f(x,y)) we could either construct a 3D surface plot, or we could reduce the
dimension by 1 and construct a 2D contour plot by letting the output z equal
various constants. The next function is of the form w = f(x,y, z), so it has 3
inputs and 1 output. We could write f: R?® — R!. We would need 4 dimensions
to graph this function, but graphing in 4D is not an easy task. Instead, we’ll
reduce the dimension and create plots in 3D to describe the level surfaces of the
function.

‘ Problem 5.11 ‘ Suppose that an explosion occurs at the origin (0,0, 0). Heat
from the explosion starts to radiate outwards. Suppose that a few moments
after the explosion, the temperature at any point in space is given by w =
T(z,y,2) =100 — 22 — y% — 22.

1. Which points in space have a temperature of 99?7 To answer this, replace
T(z,y,2) by 99 to get 99 = 100 — 22 — y? — 22. Use algebra to simplify
this to 22 + y? + 22 = 1. Draw this object.

2. Which points in space have a temperature of 967 of 847 Draw the surfaces.

3. What is your temperature at (3,0, —4)? Draw the level surface that passes
through (3,0, —4).

4. The 4 surfaces you drew above are called level surfaces. If you walk along
a level surface, what happens to your temperature?

See 14.1: 13-16 and 31-36.

See 14.1: 37-48.

See Sage or Wolfram Alpha.More
practice is in 14.1: 37-48.

See 14.1: 49-52.

See Sage. Wolfram Alpha
currently does not support
drawing level surfaces. You could
also use Mathematica or Wolfram
Demonstrations.

You can access more problems on
drawing level surfaces in 12.6:1-44
or 14.1:53-60.


http://aleph.sagemath.org/?z=eJxL06jQqdS0rdCtjDPiKs7IL9coyMkvMU7RSNNRAErpGusYawJZlRCWpiZETXJ-Xkl-aVE8SC12lToKybmJBbbqWakl6kB2fk5-UVJikW1IUWmqTk5iUmpOMZitqQkAhh0mmg
http://wolfr.am/wBOk1b
http://aleph.sagemath.org/?z=eJwrSyzSUK_QqdSpUtfkCtEAszRtDQ0MdCvijHQrgbgqzogrM7cgJzM5syS-ICe_xDhFA67Q1tJSRwHIUdA11lEw1gSyK8FsMLMKytRUAADtWRrw
http://demonstrations.wolfram.com/LevelSurfacesAndQuadraticSurfaces/
http://demonstrations.wolfram.com/LevelSurfacesAndQuadraticSurfaces/
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5. As you move outwards, away from the origin, what happens to your
temperature?

Problem 5.12| Consider the function w = f(z,y, z) = 2%+ 22. This function
has an input y, but notice that changing the input y does not change the output
of the function.

1. Draw a graph of the level surface w = 4. [When y = 0 you can draw one
curve. When y = 1, you should draw the same curve. When y = 2, again
you draw the same curve. This kind of graph is called a cylinder, and is
important in manufacturing where you extrude an object through a hole.]

2. Graph the surface 9 = 22 + 22 (so the level surface w = 9).

3. Graph the surface 16 = 22 + 22.

Most of our examples of function of the form w = f(z,y, z) can be drawn by
using our knowledge about conic sections. We can graph ellipses and hyperbolas
if there are only two variables. So the key idea is to set one of the variables
equal to a constant and then graph the resulting curve. Repeat this with a few
variables and a few constants, and you’ll know what the surface is. Sometimes
when you set a specific variable equal to a constant, you’ll get an ellipse. If
this occurs, try setting that variable equal to other constants, as ellipses are
generally the easiest curves to draw.

Problem 5.13| Consider the function w = f(z,y, z) = 22 — y? + 22.

1. Draw a graph of the level surface w = 1. [You need to graph 1 = 22 —y%+22.

Let z = 0 and draw the resulting curve. Then let y = 0 and draw the
resulting curve. Let either x or y equal some more constants (whichever
gave you an ellipse), and then draw the resulting ellipses.|

2. Graph the level surface w = 4. [Divide both sides by 4 (to get a 1 on the
left) and the repeat the previous part.]

3. Graph the level surface w = —1. [Try dividing both sides by a number to
get a 1 on the left. If y = 0 doesn’t help, try y = 1 or y = 2.]

4. Graph the level surface that passes through the point (3,5,4). [Hint: what
is £(3,5,4)7]

5.4.1 Vector Fields and Transformations: f R — R
We've covered the following types of functions in the problems above.

e y= f(x)or f: R — R (functions of a single variable)

e 7(t) = (z,y) or f: R — R? (parametric curves)

e 7(t) = (z,y,2) or f: R — R (space curves)

e 7(u,v) = (z,y,2) or f: R — R3 (parametric surfaces)

e 2= f(z,y) or f: R? - R (functions of two variables)

e 2= f(z,y,2) or f: R® - R (functions of three variables)

See Sage.

See Sage. Remember you can find
more practice in 12.6:1-44 or 14.1:
53-64.

We’ll have a few people present
this problem.


http://aleph.sagemath.org/?z=eJwrSyzSUK_QqdSpUtfkStMAszRtK-KMtKvijLgycwtyMpMzS-ILcvJLjFM04ApsTXQUgGwFXWMdBWNNILsSzAYzq6BMTQUAEvYY4A
http://aleph.sagemath.org/?z=eJwrSyzSUK_QqdSpUtfkStMAszRtK-KMdCvjjLSr4oy4MnMLcjKTM0viC3LyS4xTNOCKbA11FIBsBV1jHQVjTSC7EswGM6ugTE0FAIXAGhM
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We will finish this section by considering vector fields and transformations.

o F(z,y) = (M,N) or f: R? — R? (vector fields in the plane)

[ ]
ol

(
(,9,2) = (M, N, P) or f: R® — R3 (vector fields in space)
(

[ ]
Ny

u,v) = (x,y) or f: R? — R? (2D transformation)
o T(u,v,w) = (z,y,2) or f: R¥ - R3 (3D transformation)

Notice that in all cases, the dimension of the input and output are the same. The
difference between vector fields and transformations has to do with the applica-
tion. We’ve already seen examples of transformations with polar, cylindrical,
and spherical coordinates.

Problem 5.14 ‘ Consider the spherical coordinates transformation

f(p, 0,0) = (psingcosh, psin psin b, p cos ¢),
which could also be written as
x = psin ¢ cosf

y = psin¢sinf

Z = pcos .

Graphing this transformation requires 34+3 = 6 dimensions. In this problem we’ll
construct parts of this graph by graphing various surfaces. We did something
similar for the polar coordinate transformation in problem 4.4.

1. Let p = 2 and graph the resulting surface. What do you get if p = 37
2. Let ¢ = m/4 and graph the resulting surface. What do you get if ¢ = 7w/2?
3. Let 8 = w/4 and graph the resulting surface. What do you get if § = 7/2?

We now focus on vector fields.

Problem 5.15 ‘ Consider the vector field F(z,y) = (2z + y,x + 2y). In this
problem, you will construct a graph of this vector field by hand.

1. Compute F(1,0). Then draw the vector F(1,0) with its base at (1,0).
2. Compute F(1,1). Then draw the vector F'(1,1) with its base at (1,1).

3. Repeat the above process for the points (0,1), (—1,1), (—1,0), (—=1,—-1),
(0,—1), and (1,—1). Remember, at each point draw a vector.

‘ Problem 5.16: Spin field ‘ Consider the vector field F(z,y) = (—y,z).
Construct a graph of this vector field. Remember, the key to plotting a vector
field is “at the point (z,y), draw the vector F"(x, y) with its base at (z,y).” Plot
at least 8 vectors (a few in each quadrant), so we can see what this field is doing.

Sage can also help us visualize 3d vector fields, like ﬁ(:c, y,2) = (y, 2z, ).

Recall that ¢ (“phi”) is the angle
down from the z axis, 6 (“theta”)
is the angle counterclockwise from
the z-axis in the zy-plane, and p
(“rho”) is the distance from the
origin. Review problem 4.22 if you
need a refresher.

See Sage or Wolfram Alpha.

See Sage or Wolfram Alpha.

See Sage or Wolfram Alpha. The
computer will shrink the largest
vector down in size so it does not
overlap any of the others, and
then reduce the size of all the
vectors accordingly. See 16.2:
39-44 for more practice.

Use the links above to see the
computer plot this. See 16.2:
39-44 for more practice.


http://aleph.sagemath.org/?z=eJxVjsEKhDAMRO9-xeCpKTmId__C-1JEaEBtaPP_bLMirLe8ecOQNdRcGJqFYXm3RFjgWWxyhR5T3EoLt2K8hB__wosuaNAql2FcfWiZCdJGxkODpprO3apsHz2KhUcw7jnGxJijiie_zzp3oi_jZjWn
http://www.wolframalpha.com/input/?i=parametric+plot+3d+%282+sin+phi+cos+theta%2C+2+sin+phi+sin+theta%2C+2+cos+phi%29
http://aleph.sagemath.org/?z=eJxVjrEKwzAMRPd8xZHJMioNTdf8RfZiQsCCNha2_p9WyeJuuveOQ2uouTA0C8PybomwwFlscoQfpriVFi7F-BN-9MKLLmjQKodhXD0uKvcnQdrI6MCgqabPblW2l76Lhc4xrl3GxHhEFSfnn7eZMRN9AfBbOD8
http://www.wolframalpha.com/input/?i=parametric+plot+3d+%28rho+sin+%28pi%2F4%29+cos+theta%2C+rho+sin+%28pi%2F4%29+sin+theta%2C+rho+cos+%28pi%2F4%29%29+
http://aleph.sagemath.org/?z=eJxz06jQqdRUsFXQMNKq0K7UqdA20qrU5CrIyS-JL0tNLskvik_LTM1J0XDTUQAq1TU00DE00ASyK2FsTQCKaxIN
http://wolfr.am/y4gIgX
http://aleph.sagemath.org/?z=eJxz06jQqdSp0lSwVdAA0joVmlwFOfkl8WWpySX5RfFpmak5KcYpGm46CkCFusY6xpo6IIUQlkYVhKEJAOGFExs
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5.5 Constructing Functions

We now know how to draw a vector field provided someone tells us the equation.

How do we obtain an equation of a vector field? The following problem will
help you develop the gravitational vector field.

Problem 5.17: Radial fields| Do the following:

1. Let P = (z,y,2) be a point in space. At the point P, let ﬁ(x,y,z) be the
vector which points from P to the origin. Give a formula for F(z,y, z).

2. Give an equation of the vector field where at each point P in the plane,
the vector F»(P) is a unit vector that points towards the origin.

3. Give an equation of the vector field where at each point P in the plane,
the vector F3(P) is a vector of length 7 that points towards the origin.

4. Give an equation of the vector field where at each point P in the plane,
the vector G(P) points towards the origin, and has a magnitude equal to
1/d? where d is the distance to the origin.

If someone gives us parametric equations for a curve in the plane, we know
how to draw the curve. How do we obtain parametric equations of a given
curve? In problem 5.2, we were given the parametric equation for the path of
a horse, namely x = 2cost,y = 3sint or 7(¢t) = (2cost,3sint). From those
equations, we drew the path of the horse, and could have written a Cartesian
equation for the path. How do we work this in reverse, namely if we had only

been given the ellipse — + =— = 1, could we have obtained parametric equations
7(t) = (x(t),y(t)) for the curve?
2?2
‘ Problem 5.18 ‘ Give a parametrization of the top half of the ellipse —2+b—2
a
1, so y > 0. You can write your parametrization in the vector form #(¢) = (?,7),
or in the parametric form x =7, y =?. Include bounds for ¢. [Hint: Review 5.2.]

‘Problem 5.19‘ Give a parametrization of the straight line from (a,0) to
(0,b). You can write your parametrization in the vector form #(t) = (7,7), or
in the parametric form z =?, y =?. Remember to include bounds for ¢. [Hint:
Review 2.9 and 3.16.]

‘ Problem 5.20‘ Give a parametrization of the parabola y = 22 from (—1,1)
to (2,4). Remember the bounds for ¢.

‘ Problem 5.21 ‘ Give a parametrization of the function y = f(z) for x € [a, b].

You can write your parametrization in the vector form #(¢) = (?,7), or in the
parametric form x =7, y =7. Include bounds for ¢.

If someone gives us parametric equations for a surface, we can draw the
surface. This is what we did in problems 5.6 and 5.7. How do we work backwards
and obtain parametric equations for a given surface? This requires that we write
an equation for z, y, and z in terms of two input variables (see 5.6 and 5.7 for
examples). In vector form, we need a function 7: R? — R?. We can often use a

coordinate transformation 7': R® — R3 to obtain a parametrization of a surface.

The next three problems show how to do this.

Use Sage to plot your vector fields.
See 16.2: 39-44 for more practice.

Use Sage or Wolfram Alpha to
visualize your parameterizations.


http://aleph.sagemath.org/?z=eJxz06jQqdSp0lSwVdAA0joVmlwFOfkl8WWpySX5RfFpmak5KcYpGm46CkCFusY6xpo6IIUQlkYVhKEJAOGFExs
http://aleph.sagemath.org/?z=eJwrsS1LLNJQL1HX5CpILErMTS0pykyOL8jJL9GINtJKzi_WKNHUUTDWKs7MA7JidRQ0SnQMdIy0CjI1NQFWdRJT
http://wolfr.am/wAkR8l
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Problem 5.22| Consider the surface z = 9 — 22 — 2 plotted in problem 5.8.

1. Using the rectangular coordinate transformation f(m, y,2z) = (z,y, 2), give
a parametrization 7 : R? — R3 of the surface. [Hint: Use the surface
equation to eliminate the input variable z in T'.]

2. What bounds must you place on  and y to obtain the portion of the
surface above the plane z = 07

3. If z = f(z,y) is any surface, give a parametrization of the surface (i.e.,
x=%y="z=or7(?,7)=(7,7,7).)

Problem 5.23 ‘ Again consider the surface z = 9 — 22 — 2.

1. Using cylindrical coordinates, T(r,6,z) = (rcosf,rsinf,z), obtain a

parametrization f(r,0) = (7,?,7) of the surface using the input variables
r and 6.

2. What bounds must you place on r and 6 to obtain the portion of the
surface above the plane z = 07

Problem 5.24‘ Recall the spherical coordinate transformation

f(p, ¢,0) = (psingcosh, psinpsin b, p cos ¢).

This is a function of the form T: R® — R3. If we hold one of the three inputs
constant, then we have a function of the form 7: R? — R3, which is a parametric
surface.

1. Give a parametrization of the sphere of radius 2, using ¢ and # as your
input variables.

2. What bounds should you place on ¢ and @ if you want to hit each point
on the sphere exactly once?

3. What bounds should you place on ¢ and 6 if you only want the portion of
the sphere above the plane z = 17

Sometimes you’ll have to invent your own coordinate system when construct-
ing parametric equations for a surface. If you notice that there are lots of circles
parallel to one of the coordinate planes, try using a modified version of cylindrical
coordinates. Instead of circles in the zy plane (z = rcosf,y = rsinf, z = z),
maybe you need circles in the yz-plane (x = x,y = rsinf,z = rsinf) or the
xz plane. Just look for lots of circles, and then construct your parametrization
accordingly.

Problem 5.25| Find parametric equations for the surface 22 + 2% = 9. [Hint:
read the paragraph above.]

1. What bounds should you use to obtain the portion of the surface between
y=—2and y =37

2. What bounds should you use to obtain the portion of the surface above
z=07

3. What bounds should you use to obtain the portion of the surface with
x> 0andy € [2,5]?

Use Sage or Wolfram Alpha to
plot your parametrization. See
16.5: 1-16 for more practice.

Use Sage or Wolfram Alpha to
plot your parametrization with
your bounds (see 5.22 for
examples). See 16.5: 1-16 for
more practice.

We did very similar things in
problem 5.14. marginparSee 16.5:
1-16 for more practice.

Use Sage or Wolfram Alpha to
plot each parametrization (see
5.22 for examples).

Use Sage or Wolfram Alpha to
plot each parametrization (see
5.22 for examples).


http://aleph.sagemath.org/?z=eJwL0ajQqdSp0lSwVYCyuAqKMvNKFJRCNKpsK7QrNRUyi5V0FGA8roLEosTc1JKizOT4gpz8Eg2YhA5Iv66xjjGIVQlhaQIALhka5w
http://wolfr.am/zk2KTu
http://aleph.sagemath.org
http://wolframalpha.com
http://aleph.sagemath.org
http://www.wolframalpha.com/
http://aleph.sagemath.org
http://www.wolframalpha.com/
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5.6 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to Brainhoney and download the quiz. Once you have taken
the quiz, you can upload your work back to brainhoney and then download the
key to see how you did. If you still need to work on mastering some of the ideas,
please do so and then demonstrate your mastery though the quiz corrections.



Chapter 6

Derivatives

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Find limits, and be able to explain when a function does not have a limit
by considering different approaches.

2. Compute partial derivatives. Explain how to obtain the total derivative
from the partial derivatives (using a matrix).

3. Find equations of tangent lines and tangent planes to surfaces. We’ll do
this three ways.

4. Find derivatives of composite functions, using the chain rule (matrix
multiplication).

You’ll have a chance to teach your examples to your peers prior to the exam.

6.1 Limits

In first-semester calculus, you learned how to compute limits of functions. We
need to define limits before proceeding. One possible definition of a limit follows.

Definition 6.1. Let f : R — R be a function. We write lim f(z) = L if and
Tr—c

only if for every e > 0, there exists a § > 0 such that 0 < |z — ¢| < § implies

|f(z)—L| <e.

This formal definition is studied extensively in upper division math classes.
We’re looking at it here because we need to compare it with the formal definition
of limits in higher dimensions. The only difference: just put vector symbols
above the input = and the output f(x).

Definition 6.2. Let f : R” — R™ be a function. We write lﬁimﬁf(f) = [ if and
Tr—cC

only if for every e > 0, there exists a § > 0 such that 0 < |Z — ¢] < § implies

|f(@) — L| <e.

We'll find that throughout this unit, the key difference between first-semester
calculus and this course is that we replace input and output of functions with
vectors.

43
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Problem 6.1| For the function f(x,y) = z, we can write f in the vector

notation § = f(&) if we let Z = (z,y) and 7 = (z). Notice that Z is a vector of
inputs, and ¥ is a vector of outputs. For each of the functions below, state what
Z and ¢ should be so that the function can be written in the form § = f(Z).

1. f(z,y,2) =w

2. 7(t) = (z,y,2)
3. Flu,v) = (x,y, 2)
4. F(z,y) = (M,N)

5. F(p,$,0) = (z,y,2)

You learned to work with limits in first-semester calculus without needing
the formal definitions above. The following problem has you review some of the
limit techniques from first-semester calculus.

Problem 6.2 Compute each of the following limits, or state why the limit

does not exist. Do these problems without using L’Hopital’s rule, as there is
not a good substitute for L’Hopital’s rule in higher dimensions.

1. im2z?> -3z +5
r—2

2 _
2. lim © Y
=3 ©r—3
3. lim — [Hint: graph the function.]
r—0 |1‘|

Some of the techniques you used in single-variable calculus give us immediate
techniques for handling multivariable functions.

Problem 6.3 | Do the following limits:

1 9 — a2 —y?

. lim
(2,y)—(2,1)
=Y

2. 1 =7
() (4.4) 72 — 12

You should have observed that all the limits above existed, except for the
2 /|z| limit. You can show that limit does not exist by considering what happens
from the left, and comparing it to what happens on the right. In first-semester
calculus you used the following theorem extensively.

If y = f(x) is a function defined on some open interval containing c,
then lim f(x) exists if and only if lim f(z) lim+ f(z).
Tr—cC Tr—c— Tr—C

A limit exists precisely when the limits from every direction exists, and all direc-
tional limits are equal. In first-semester calculus, this required that you check
two directions (left and right). This theorem generalizes to higher dimensions,
but it becomes much more difficult to apply. The following problem will show
you why.

Problem 6.4| Consider the function f(z,y) =

determine if the function has a limit at (0, 0).

22 — 2

L Our goal is to

The point to this problem is to
help you learn to recognize the
dimensions of the domain and
codomain of the function. If we
write f: R" — R™ then # is a
vector in R™ with n components,
and ¢ is a vector in R™ with m
components.

See 14.2: 1-30 for more practice.

You may want to look at a graph
in Sage or Wolfram Alpha (try
using the “contour lines” option).
As you compute each limit, make
sure you understand what that
limit means in the graph.


http://aleph.sagemath.org/?z=eJxL06jQqdS01aiIM9KtjDPS1AextEEsroKc_BLjFI00HaASXWMdY00djUoIQxMAoucONQ
http://wolfr.am/ioCqzX
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1. In the zy-plane, how many ways are there to approach the point (0,0)?
Give a few examples.

2. One approach to the origin is to travel along the z-axis (so y = 0). Using
this approach, compute the limit

22 — o2 22— 02
lim 5 = lIm ——— =
0,00 z¢+y* =022 -0

3. Another approach to the origin is to travel along the y-axis (so let = = 0).

Compute the limit along this approach, namely
2?2 — 2

lim ) $2+y2.

(=, y)—>

(o,
0

4. Another approach is to travel along the line y = z. What is the limit at
(0,0) along this approach?

5. Does this function have a limit at (0,0)? Explain.

The theorem from first-semester calculus generalizes as follows.

If y = f (Z) is a function defined on some open region containing
G, then lim f(Z) exists if and only if the limit exists along every
Tr—cC

possible approach to ¢ and all these limits are equal.

There’s a fundamental problem with using this theorem to determine if a limit
exists. Once the domain is 2-dimensional or higher, there are infinitely many
ways to approach a point. There is no longer just a left and right side. So you
can prove a limit exists, provided you can check infinitely many cases. That’s the
problem—checking infinitely many cases takes a really long time. The theorem
can also be used to show that a limit does not exist. All you have to do is find
two approaches with different limits.

Problem 6.5| Consider the function f(z,y) = PR + 5+ Does this function
have a limit at (0,0)? Examine the function at (0 0) by considering multiple
approaches (feel free to use the same approaches as in the problem above).

This is an alternate way to solve the problem above. Consider the

function f(z,y) = z7z. Does this function have a limit at (0,0)? Compute
the limit at (0,0) along the approaches y = ma (this takes care of every line
through the origin, except = 0). Then compute the limit at (0,0) along the

approach y = x2.

‘Problem: Challenge‘ Give an example of a function f(x,y) so that the

limit at (0,0) along every straight line y = ma exists and equals 0. However,
show that the function has no limit at (0,0) by considering an approach that is
not a straight line.

See 14.2: 41-50 for more practice.

See Sage.
See 14.2: 41-50 for more practice.

You might use the Sage tool above
to investigate


http://aleph.sagemath.org/?z=eJyVVF1r2zAUfc-vuKQFy7PS2QndoCBY2dtgMFjfShtubLnW6lhCUlqrv37XlvOxtdtYEoKlc3TOufcKn50BfNFNBzcWn5Tj8FU5N_yMUfBZt618kBy-G6u6B1jmRTGbPaFlSc9Dks4-qc5Li6WfVbKGNauF6szOrze6Z7SDu9YL1r8L6XvW3y-zcL9MUz6D8WP8W-Sc5ymHFjeyFfNvmvSv4JyRWyrO5xyeVeUbUeQHFTTGaiyb4g2xRX9Qup5oUJBc-LvU8g0pSv9aa_laa5JKr8aHPuchF8aPi6GFHhq_bVlyDW5naywl7eoNbtoADTpAaNVWeUAPviFsKB9UPSysBOWg0wTS2aqSHZQNdg-0TU-61TayLpJ0MIv2diDQAHifLwr6y4oYMExAoHgEhAOwTyVIsvN6Z9em1Z7VPErx6SQvt2hE8kP6hI_eG7Tixu4IiMecuJx6MRa0jpWIWBFjY1_SeFQkVlYJd-pFilXOX7StpBWreLqmsnCokB3mzI9zmrp8EjwTamtaVQ6WQ_CwwH30ffLouWmxfEymohv9zE5yZpNYRLGXTqC1xGFR6ra44-M13a-XcZ1mEy2fzEYi3ebjxsA85eV8UURCzov0aJgJL3u_qti8p9t19Mkuislqj4f5r_oj4wR_me_lCZkcjBiaQ2j9W3NAG6TeBZFffOADJzbEiY-XFJpy_d9QTCYMWtxKb1UZB0J3EXnNgkB6EcDhVm1VJ449ozX24tgy36jysZPOidUf52f-qYLOyNKvLXqlxW3B6XuXzn4C8NyNiQ
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6.2 Partial Derivatives

Recall from first-semester calculus the following definition of the derivative.

Definition 6.3. We define the derivative of a function f at z to be the limit

d _fle+h) - fz)
/ = — =
fia) = —lf(@)] = lim o ;
provided the limit exists. Whether you write f’ or % does not matter, as they

both represent the same thing. The notation % leads to the differential notation
dy = f'dz, which we will use to generalize the derivative to all dimensions.

Before discussing the derivative of a function in higher dimensions, we first
define partial derivatives. A matrix of partial derivatives will make up the total
derivative.

Definition 6.4: Partial Derivative. Let f be a function. The partial deriva-
tive of f with respect to = is the regular derivative of f, provided we hold all
input variables constant except z. If f = f(z,y, z), we write any of

af @

f(erh,y,z)ff(x,y,z)
h

to mean the partial of f with resepect to x. The partial of f with respect to
0
Yy, written a—f = fy, is the regular derivative of f, provided we hold all input

variables constant except y. A similar definition holds for partials with respect
to any variable.

Problem 6.6| Find the indicated partial derivatives. See 14.3: 1-40 for more practice. I

strongly suggest you practice a lot

of of this type of problem until you

— 2 2

1. For f(x,y) = 2 4 22y + 3y* find aor and fy. can compute partial derivatives
with ease.

2. For f(x,y,z) = 2%y3z%, find f,, g and D, f.
Y

. or or
3. For #(u,v) = (u,v, v cos(uv)), find 0 and P
q F F
4. For F(z,y) = (—y,ze3Y), find % and (Z—y

Since a partial derivative is a function, you can take partial derivatives of
that function as well. If you want to first compute a partial with respect to x,
and then with respect to y, you would write

o 0 o of  0f

Jev = 552! = By o = Byor

The shorthand notation f;, is easiest to write, but in upper-level courses, we
will use subscripts to mean other things. At that point, we’ll use the fractional
partial notation to avoid confusion.

Problem 6.7 | Consider the function f(z,y) = 32y + v’

2 2 2 2
1. Compute the second partials a—f or ot o7

0x2’ dydx’ oy’ an 0x0y’




CHAPTER 6. DERIVATIVES 47

2. For f(z,y) = 22 + 2zy + y*, compute both f., and fy,.
3. Make a conjecture about a relationship between f,, and fy,.

4. Use your conjecture to quickly compute f5, if

f(z,y) = tan®(cos(z))(z*® + x)10% 4 3zy.

The next problem will help you visualize what a partial derivative means in
the graph of a surface.

Problem 6.8 Consider the function f(z,y) =9 — 2% — 3?. Construct a 3D See Sage.

surface plot of f (see problem 5.8). We’ll focus on the point (2, 1).

1. Let y = 1 and construct a graph in the zz plane of the curve z = f(x,1) =
9 — 22 — 12. Find an equation of the tangent line to this curve at z = 2.
Write the equation in the form (z — z9) = m(x — xg).

2. Let = 2 and construct a graph in the yz plane of the curve z = f(2,y) =
9 — 22 — 42, Find an equation of the tangent line to this curve at y = 1.
Write the equation in the form (z — z9) = m(y — yo).

3. Compute f, and f, and then evaluate each at (2,1). What does this have
to do with the previous two parts?

4. (We'll answer the remaining parts of this problem in class together. If you
complete them, we’ll let you share with us your answer.) If the slope of a
line y = mx + b is m, then we know that an increase of 1 unit in the x
direction will increase y by m units. Fill in the blanks, as they relate to
the function f(x,y) = 9 — 2% — y? and the lines above.

e Increasing = by 1 unit when y does not change will cause z to increase

by about units.

e Increasing y by 1 unit when « does not change will cause z to increase

by about units.

5. In the previous part, we said that z increased by about a certain amount.
Why did we not say that z increases by ezactly that amount?

Once we have partial derivatives, we can calculate tangent lines to a surface.
This means we can also find normal vectors and tangent planes as well. Normal
vectors to surfaces (i.e., vectors that are perpendicular to the surface) are
extremely important in many areas, including physics, optics, and computer
graphics.

Problem 6.9 Consider the function f(x,y) =9 — 22 — y? at the point (2,1). See Sage.

From the previous problem, we know that increasing x by 1 unit when y does See 14.6: 9-12 for more practice.
not change will cause z to increase by about f, units. In terms of vectors, we
have (Ax, Ay, Az) = (1,0, f,) is a tangent vector to the surface.

1. At the point (2,1), find a tangent vector to the surface in the x direction
(so compute f;(2,1) and put it in the vector (1,0, f,)). Then give a vector
equation of the tangent line to f in the x direction.

2. At the point (2, 1), find a tangent vector to the surface in the y direction.
Then give a vector equation of the tangent line to f in the y direction.


http://aleph.sagemath.org/?z=eJxtjUEOgjAQRfecoiEktHEwWOLCxazdewAMgSKNQJu2idTT26IxatxMZjL_vd_TBTzDQ7HUvPA1TzTqUbmqoz2EV1FBxYD610KUblrpPJbbPUv0BrWSs6OUww76OBmDVo3KYG5El4OVd4G8fEYb00zCGdmeYwMN9gh5jBB5d5FP3g2yvc7CWqz-Ozj44FiQrw7_47gYIeYcyJcmGdw00vQkOiItyUJ_BuQYk-sdXFnKEjuoG9XsARLFVGs
http://aleph.sagemath.org/?z=eJx9kUtvAiEYRff8CqImA8qYkUkTu2DdfbdNbSYMKOkIBFCH_voCPprax2YyX_Jx7uUg0UgiZo_1uKF13FBgA0OUrIjMX4wBmMqD5kEZDTvdQ2uUDsAyO5jQ9kiSdL5uSYsJipcfaGzHVYisWT5gYBesnEE2EMjNYByrnOgrAr36EIw2OQLygzsKX5Y71-1FcIq_5QyU-LlMZKkMgbe0b6iwU_xdC-9Zi-EUpt1fSZTERBoZLaR4R9o6IXSqdQdL67ngUfBgnAdyZHLZK5k4GMh4HeL5ojnmvIleVqQhciwWXzHxoXOBZQdf_PUtO4phMKfqJ6TJl49XCPyfYlynt6LKQu3QafGHznitNUdjTfHiwp-jWK_SdH73oropfpKp5u5d1yljF_YDmjyLHioPZ8n5jMCn7LDMSdtsgoHfmROy-BN9Vrcb
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3. Give an equation of the tangent plane to f at (2,1). [Hint: we’ve found
equations of planes before—see problems 2.27 and 2.23. The cross product
will come in handy.]

This next problem will help you see how parametric functions can simplify
the process of finding tangent vectors and planes.

‘ Problem 6.10 ‘ Again, consider the function f(z,y) = 9—x2—y? at the point
(2,1). A parametrization of this surface is #(z,y) = (v,9,9 — 22 — y?). We'll
use the parametrization to find an equation for the tangent plane at (2,1,4).

—

1. Compute ﬁ(2, 1). Then give a vector equation of the tangent line to f
in the = direction.

or

87/(

in the y direction.

2. Compute 2,1). Then give a vector equation of the tangent line to f

3. Give an equation of the tangent plane to f at (2,1). [Hint: See problem
2.27)

Problem 6.11 ‘ Let f(z,y) = 2% + 42y + y?. Give two vector equations of
tangent lines to the surface at (3,—1). Then give an equation of the tangent
plane.

The next problem helps you generalize what you did above to construct the
general formula for the tangent plane and normal vector to a surface z = f(z,y)
at the point (a,b).

Problem 6.12 ‘ Recall that an equation of the tangent line to y = f(x) at
xz=cisy— f(c) = f'(¢)(x — ¢). Let z = f(x,y) be a function whose partial
derivatives exist.

1. Give two vectors tangent to the surface at (z,y) = (a,b).
2. Give a normal vector to the surface at (a,b).

3. Give an equation of the tangent plane to the surface at (a,b).

The next problem generalizes the tangent plane and normal vector calcula-
tions above to work for a parametric surface 7(u, v).

See 16.5: 27-30 for more practice.

See Sage.
See 14.6: 9-12 for more practice.

Page 811 has the answer, but
written in a slightly different form
than you will get. In addition,
they arrive at the solution in a
completely different way.

Problem 6.13 ‘ Consider the cone parametrized by 7(u, v) = (ucos v, usin v, u)See Sage.

1. Give vector equations of two tangent lines to the surface at (2,7/2) (so
u=2and v=m/2).

2. Give a normal vector to the surface at (2,7/2).

3. Give an equation of the tangent plane at (2,7/2).

See 16.5: 27-30 for more practice.


http://aleph.sagemath.org/?z=eJx9kk-PwiAQxe_9FERNCu1oWusmXjjvfa8bNaQFJVsLAdSyn36havefuycCmfm9N28QuAdPaL9d5qusz3zut8tEO4ormJcghoOQJJmKU1c7qTrEugZpJTuXaDqcWDtAtWqVoanhTQrIyndOlwVJdE51q1zVYAFBqIAVAexhXkFJACnNauk8LRZPUQHVJ3Pmdmhihh25M7LexX4cegc3nkY3gO6sb7LuIOu3jltLK4KmKNY-ZFXgA6oPVZE0urmh9obzLszwgxbKo8Uzr50yNhE9FYtGisAhifD3ix9HxtdK_FoGp6K_5rghYB0zjsbEPgXWo7jnbasu6W9KAWF8P1LQ_xhlWLfnaQxVt6zjf0TqR2MZ7ucVye8KGfZ5Ga637X_J-9Hy1nCT1Sej20H24I4tnrzwBkmLZnETM0DPMdnhIYQ5m5DEHtQFa0DM6jDmzrDwv2gIrIRFuSEf2ELG4w
http://aleph.sagemath.org/?z=eJx9kM1uwjAQhO95ihUgxQ4uhbSVevG5954rVZZjwMLY1voH0aevEwhEFerJu9buN7ODJLFMOUmNdIFkyiA1QdtLRSsfudEhEiQt8_q5pbSq5ttkZdTOgrAdeKdtrDwfXuIjA-mMQ16j6moGQf8o3q4Lacm9QHFUEbX89sYVKIOivmavRYvkUkDbeF0a54XU8czXq7deD2TCrMJDBMl88DVBTfXjXsuDVSHwFwpzuAw_BiXejj6uNq6gHSplyyl_WGW-95aVjA5DhYnjqtPbLSmxYR6bfLl8kEhjiCxEgZH3Yd2h7zfBszLGnerJZr5twv-rDoXdqbpPzRth1aNTU3N3sszNFD5mWFJ42rANZVesT-jNgN3HoyGzT9WBDrDI_KvfXDD46EMa_kouixmtwt6diKe_OvC8aA
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6.3 The Derivative

Remark 6.5. In problem 6.8, we learned the following for z = f(z, y).

e Increasing x by 1 unit when y remains constant will cause z to increase
by about f, units.

e Increasing y by 1 unit when z remains constant will cause z to increase
by about f, units.

We will use these facts to introduce differential notation for functions of several
variables, and then define the total derivative as a matrix of partial derivatives.

‘ Problem 6.14‘ Fill in the blanks. For this example, consider the function

e Remember that increasing = by 1 when Ay = 0 will cause z to increase
by about f, units. So increasing x by only % when Ay = 0 will cause z
to increase by about % fz- In a similar fashion, increasing y by % when

Az = 0 will cause z to increase by about . Combining these two

ideas, we find that if Az = % and Ay = %0 then Az =~

e Increasing = by dr when Ay = 0 will cause z to increase by about

Increasing y by dy when Az = 0 will cause z to increase by about
So combining these two ideas, we find that if Az = dax and Ay = dy then

Az~__ | [Hint: read the definition below to see if you're on
the right track.]

Based on the answer from the previous problem, we define the following.

Definition 6.6. In first-semester calculus, if y = f(x), we defined the differential
of f to be
df

dx
where dx represents a change in x. We can think of this as “A tiny change in
the output f(z) is approximately the same as the derivative, multiplied by a
small change in the input z.”
Based on the defintion from first semester calculus, and the answer from the
previous problem, if z = f(x,y) we’ll define the differential of f to be
_of of

df = Gpdo + 5 v,

df = f'dx = = du,

or in short-hand notation df = f.dx + f,dy, where dx and dy are independent
variables which represent small changes in z and y.

In the next problem, you will use differential notation to discover the deriva-
tive of a function in high dimensions. We would like to be able to think of
differential notation in all dimensions in the same way we think about it in
one dimension. Ideally we could say “A tiny change in the output f(z,y) is
approximately the same as the derivative D f(z,y), multiplied by a small change
in the inputs x and y.”

Problem 6.15| In each problem below, your job is to find a matrix M so See Section 1.3 to refresh on how
that the matrix product is the same as the corresponding differential notation. to do matrix multiplication.
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1. Let f(z,y) = 2z. Find a matrix M so that
dx
df = fzdx + fydy =M dul -
Y
2. Let f(x,y,2) = w. Find a matrix M so that
dz
df = fedz + fydy + f.dz =M |dy
dz
3. Let 7(t) = (z,y). Find a matrix M so that
dF dr
dif = —dt = ( 3¢ | = Mdt.
T (‘j;;dt)
or | P or |*v
4. Let 7 = . We will think of — = |y, d — = |v
et 7(u,v) = (z,y,2). We will think o 5 Z and - Z as
column vectors (single-column matrices). Find a matrix M so that
L or or . du
dr' = %du—l—%dv—M [dv} .

Definition 6.7. The derivative of a function f : R — R™, where §j = f(f), is
a matrix, written D f and read “the derivative of f”. The columns of the matrix
are the partial derivatives of the function. The order in which you list the input
variables of f is precisely the order in which the partials occur in the columns
of the matrix.

This matrix D f gives the best possible linear approximation to changes in
the outputs, based upon changes in the inputs. We write the previous sentence
symbolically as dy = D fdi’.

In first-semester calculus, we wrote the derivative of y = f(x) in differential
notation as dy = f’dxz. To generalize, we put a vector above each variable and
change f’ from a number (a one-by-one matrix) to a matrix. This results in the
derivative of § = f(&) being written in differential notation as dij = D fd#. This
more general differential notation is valid in all dimensions.

Remember, to find the derivative of a function, compute all the partial
derivatives and then place them in the columns of the matrix. Every input
variable gets a column. FEvery input variable gets a column. Every input
variable gets a column.

‘ Problem 6.16 ‘ For each function below, state the dimensions of the domain
and codomain (numbers of inputs and outputs) and write the function in the
form f : R™ — R™ (figure out what n and m are). Then find the derivative
(as a matrix). How does the number of rows and columns relate to n and m?
Remember, every input variable gets a column.

L f(z,y) = 2?4+ day +¢°
2. f(z,y,2) = a?

3. 7(t) = (cost,sint) (Remember to place vectors in columns.)

—yzg

The derivative of a function, Df,
is given many names in the
literature. It’s called the total
derivative, the matrix derivative,
the Jacobian, the Jacobian matrix,
and more. We’ll just call thhe
derivative.

This handwritten file has 6
problems, together with solutions,
that you can use as extra practice.

I'll have 4 people present this one
in class.


http://db.tt/cSeKG8XO
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=~
=

(t) = (cost,sint,t)

o
=

(a,t) = (acost,asint,t)

o
Ny

(r,0) = (rcosf,rsinf)

~
ol

(z,y) = (2 + 3y, 4z + 5y)

oo
ol

(,y,2) = (2x + 3y — bz, 4z + by + 22, 1y2)

Once we have the multivariable (matrix) derivative, almost every idea from
first-semester calculus can be generalized to all dimensions by just replacing f’
with Df and putting vector symbols above the inputs and outputs. As a first
example, let’s examine how tangent lines generalize to tangent planes.

Remark 6.8. In problem 1.10, we saw that the differential notation dy = f’dx
allowed us to write an equation of the tangent line to y = f(z) = 2% at © = 3.
Here’s a recap of what we did.

The derivative is f/(z) = 2z which at @ = 3 equals f'(3) = 6. The
graph of the function passes through the point (3, f(3)) = (3,9). If
(z,y) is any point on the tangent line, then the change from (3,9) to
(x,y) is given by (dz,dy) = (z,y)—(3,9) = (x—3,y—9). Differential
notation then says dy = f/(3)dx, or in other words, (y—9) = 6(z—3).

Tangent lines pop out instantly from differential notation. Tangent planes will
“pop out” too, as well as tangent objects in any dimension.

‘ Problem 6.17 ‘ Read the remark above. Then give an equation of the tangent See Sage.
plane to f(x,y) =9 — 2% — y? at (2, 1) by using differential notation. Try doing

so without using the steps below, but rather just mimic what we did in the

remark above (replacing inputs and outputs with vectors, and the derivative

with the appropriate matrix). If you need the following steps, then use them.
Compare with problem 6.9.

1. Find Df(z,y) and then Df(2,1). You should have two matrices. Also
Find the point (2,1, f(2,1)) on the graph of the surface.

2. If (z,y,z) is any point on the tangent plane, find the change from
(2,1, f(2,1)) to (z,y, z) (subtract vectors). This change is (dx, dy, dz).

3. We'll use differential notation to finish this problem. We want to generalize
dy = f'dx (a change in outputs equals the derivative times a change in
inputs), so we will use the notation dg = D fdZ. Recall the following:

e The inputs to z = f(z,y) are x and y, so the input vector is ¥ = (x, y).
The output is z, so the output vector is ¥ = (2).

e The change in inputs is (dz, dy). The change in outputs is (dz).
e The differential notation dy = D f d¥ then, in this case, becomes
[dz] =Df [fﬂﬂ This means a very small change in the output z

equals the derivative times very small changes in the inputs  and y.

Now use the differential notation [dz] = Df Zﬂ to write a matrix

equation of the tangent plane (use D f(2,1) from part 1 and dz, dy, and dz
from part 2). Then perform the matrix multiplication to get an equation
of the tangent plane. Compare your answer with problem 6.9.


http://aleph.sagemath.org/?z=eJx9kEFuwyAQRfecAqkLQzKOsKNK6YKTVE2FMDQoLiCgDfT0BTvuopW6Gc1IM-__-ZpkKJQ_9fk89uU8Ip84GWEA3SqlCD3oDyuTcRYLO2HvjE3Icz-7dJyIhnrfH-FIgZR7g50X0qTC2eGRIr_nyw3xCbB0swu8C2rqAEfzpfjImgT-VDK5EJHOXB8mozXJFOmyDWXlVE2ybpLnARjovJh8oRCTCIk3iXQx8mpVjPz0o1fUPLtb9xfC2qNlg-D_KS4I-6a65tfPwqqFJoJ4VykY-bqAW5qbrR3J_Uj3d_6OlH6o0xor4LrJlrRqbuxXbKeqES_uRjz9BkpQfFk
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‘Problem 6.18‘ Suppose z = f(z,y) has a derivative Df(z,y). Use dif-
ferential notation to give an equation of the tangent plane to the surface at
(z,y) = (a,b) (use the steps from the previous problem if needed). Multiply out
any matrix products. What is a normal vector to the plane? Compare with
problem 6.12.

6.4 The Chain Rule

Let’s recall the chain rule from first-semester calculus.

Theorem 6.9 (The Chain Rule). Let x be a real number and f and g be
functions of a single real variable. Suppose f is differentiable at g(x) and g is
differentiable at x. The derivative of f o g at x is

(Fo0) (@) = 4 (f 0 9)(&) = f'(9(a)) - /().

Some people remember the theorem above as “the derivative of a composition
is the derivative of the outside (evaluated at the inside) multiplied by the

d df d
derivative of the inside.” If u = g(x), we sometimes write a _ X The

. ) ) dr du dx
following problem is designed to help you master the notation.

Problem 6.19‘ Suppose we know that f'(z) = 281121(1)3 and g(z) = vVa? + 1.
x

Notice we don’t know f(x). This is actually quite common in real life, as we

can often measure how something changes (a derivative) without knowing the

actual function.

1. What is f'(z) and ¢'(z)?
2. What is the difference between f/(z) and f'(g(x))? State f'(g(x)).

3. Use the chain rule to compute (f o g)'(z).

—

We now generalize to higher dimensions. If I want to write f(g(Z)), then
Z must be a vector in the domain of g. After computing §(#), we must get a
vector that is in the domain of f.

‘Problem 6.20‘ Consider f(z,y) = 9 — 2% — y? and 7(t) = (2cost, 3sint).
For this problem, imagine the following scenario. A horse is running around
outside in the cold. The horse’s position at time ¢ is given by the elliptical path
7(t). The temperature of the air at any point (z,y) is given by T = f(x,y).

1. At time ¢t = 0, what is the horse’s position 7(0), and what is the temperature
f(7(0)) at that position? Find the temperatures at ¢ = 7/2, ¢ = 7, and
t = 3m/2 as well.

2. In the plane, draw the path of the horse for ¢ € [0, 27]. Then, on the same
2D graph, include a contour plot of f. Make sure you include the level
curves that pass through the points in part 1. (See 5.2 and 5.9 if you need
help.) At the points addressed in part 1, write the temperature on the
curve.
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3. As the horse runs around, the temperature of the air around the horse is

constantly changing. At which ¢ does the temperature around the horse
reach a maximum? A minimum? Explain, using your graph.

. As the horse moves past the point at ¢t = 7 /4, is the temperature of the

surrounding air increasing or decreasing? Use your graph to explain.

Draw the 3D surface plot of f. In the xy-plane of your 3D plot (so z = 0)
add the path of the horse. In class, we’ll project the path of the horse up
into the 3D surface (give it a try yourself first).

Problem 6.21‘ Consider f(z,y) = 9 — 22 — y? and 7(t) = (2cost,3sint),

which means z = 2cost and y = 3sint.

1.

For the function 7(t) = (z,y), the input is ¢ and the outputs are = and y.

So differential notation states that

dx L,
( dy) = Di(t) (dt) .
Compute Di(t).

For the function 7' = f(z,y), the inputs are = and y, and the output is
temperature T'. Differential notation states that

(dT) = Df(x,y) (‘;;) :

Compute D f(z,y).

Now we want to find out how the temperature T' changes with respect to
time t. We already know

(ZZ) = Di(t) (dt) and (dT) = Df(x,y) (j‘;) .

Use these two differential facts to write a change in temperature d7T" in
terms of a change in time dt.

. Compute the matrix product Df(x,y)D7(t), and then substitute z =

2cost and y = 3sint. You should have an expression of the form dT" =
(?)dt where ? is some function of ¢.

What is df /dt (i.e., dT'/dt) at t = w/47 Is it positive or negative? Compare
with part 4 of the previous problem.

Problem 6.22‘ Consider f(z,y) =9 — 2% — y? and 7(t) = (2cost, 3sint).

1.

2.

3.

Writing 7(t) = (2cost, 3sint) means x = 2cost and y = 3sint. In f(z,y),
replace x and y with what they are in terms of ¢. This will give you f as
a function of ¢.

Construct a graph of f(t) (use software to draw this if you like). From
your graph, at what time values do the maxima and minima occur?

Compute df /dt (the derivative as you did in first-semester calculus).

This idea will lead to a very
important optimization technique,
Lagrange multipliers, later in the
semester.

Try to always remember the
following summary of differential
notation: a change in the outputs
equals the derivative times a
change in the inputs.
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4. What is df /dt at t = 7 /47

5. Compare your work with the previous problem.

The previous three problems all focused on exactly the same concept. The
first looked at the concept graphically, showing what it means to write (fo7)(t) =
f(7(t)). The second tackled the problem by considering matrix derivatives. The
third reduced the problem to first-semester calculus. In all three cases, we
wanted to understand the following problem.

If z = f(x,y) is a function of x and y, and both x and y are functions
of t, so in vector form we can write 7(t) = (x(t),y(t)), then find
how quickly f changes as you change ¢. In other words, what is the

derivative of f with respect to t. Notationally, we seek di; which

formally is written %[f(x(t),y(t))] or %[f(f’(t))]

The second problem above gave us an example of the multivariable chain rule.

Theorem 6.10 (The Chain Rule). Let & be a vector and f and § be functions
so that the composition f(g(f)) makes sense (the output of g can be used as an
input to f). Suppose fzs differentiable at §(Z) and g is differentiable at &. The
deriative of fo g at X is

— —

D(f° §)(Z) = Df(g(Z)) - DF(T).

In other words, the derivative of a composition is equal to the derivative of the
outside (evaluated at the inside), multiplied by the derivative of the inside.

This is exactly the same as the chain rule in first-semester calculus. The only
difference is that now we have vectors above every variable and function, and
we replaced the one-by-one matrices f' and ¢’ with potentially larger matrices
Df and Dyg. If everything is written in vector notation, the chain rule in any
dimensions is the same as the chain rule in one dimension.

‘ Problem 6.23 ‘ Suppose f(x,y) = 2? + xy and = 2t + 3 and y = 3t + 4. See 14.4: 1-6 for more practice.

1. Rewrite the parametric equations 2 = 2t + 3 and y = 3t?> + 4 in vector
form, so we can apply the chain rule. This means you need to create a

function 7(t) = ( ).

2. Compute the derivatives D f(z,y) and D7(t).

3. The chain rule states that D(f o 7)(t) = Df(#(t))D7(t). What is the
difference between D f(z,y) and Df(7(t)). [Hint: see problem 6.19.]

4. Use the chain rule to compute D(f o 7)(¢). What is df /dt?

Problem 6.24 ‘ Suppose f(z,y,2) =2 +2y+322 and z = u+v, y = 2u— 3v, See 14.4: 7-12 for more practice.
and z = wv. This means that changing v and v should cause f to change. Our

goal is to find 9f/0u and df/Ov. Try doing this problem without looking at

the steps below, but instead try to follow the patterns in the previous problem

on your own.

1. Rewrite the equations for z,y, and z in vector form 7(u,v) = (z,vy, 2).
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2. Compute Df(x,y,z) and Di(u,v).

3. Use the chain rule (matrix multiplication) to find D(f o #)(u,v). Notice
that since this composite function has 2 inputs, namely v and v, we should
expect to get two columns when we are done.

4. What are 0f /0u and 0f/0v? [Hint: remember, each input variable gets a
column. |

Problem 6.25‘ Suppose ﬁ(s,t) = (25 + t,3s — 4t,t) and s = 3pqg and t =
2p + ¢°. This means that changing p and ¢ should cause F to change. Our goal
is to find OF /Op and OF /0q. Note that since F is a vector-valued function,
the two partial derivatives should be vectors. Try doing this problem without
looking at the steps below, but instead try to follow the patterns in the previous
problems on your own.

1. Rewrite the parametric equations for s and t in vector form.
2. Compute DF (s,t) and the derivative of your vector function from part 1.

3. Use the chain rule (matrix multiplication) to find the derivative of F with
respect to p and ¢. How many columns should we expect to have when we
are done multiplying matrices?

4. What are F /0p and 8F /dq?

Problem 6.26‘ Suppose w = f(x,y,z) and z,y,z are all function of one
variable ¢t (so z = ¢(t),y = h(t),z = k(t)). Find a general formula for dw/dt
that involves partials of f and derivatives of x, y, and z. Try doing this problem
without looking at the steps below, but instead try to follow the patterns in the
previous problems.

1. Rewrite the parametric equations for z, y, and z in vector form 7(t)
(2,9,2).

2. Compute Dw(z,y, z) and D7(t).

3. Multiply the matrices together to get D(wor)(t). The matrix should have
one entry. State what dw/dt equals.

Problem 6.27‘ Suppose z = f(s,t) and s and ¢ are functions of u, v and w.
Use the chain rule to give a general formula for 9z/0u, 0z/0v, and dz/0w.

You've now got the key ideas needed to use the chain rule in all dimensions.
You'll find this shows up many places in upper-level math, physics, and engineer-
ing courses. The following problem will show you how you can use the general
chain rule to get an extremely quick way to perform implicit differentiation from
first-semester calculus.

Problem 6.28 ‘ Suppose z = f(x,y). If z is held constant, this produces a
level curve. As an example, if f(x,y) = 22 + 3zy — y® then 5 = 22 + 3zy — ¢°
is a level curve. Our goal in this problem is to find dy/dz in terms of partial
derivatives of f.

See 14.4: 13-24 for more practice.
Don’t use the “branch diagram”
in the book—use matrix
multiplication instead. The
branch diagram is just a way to
express matrix multiplication
without having to introduce
matrices.

See 14.4: 25-32 to practice using
the formula you developed. To
practice the idea developed in this
problem, show that if

w = F(z,y,z) is held constant at
w = c and we assume that

z = f(z,y) depends on z and y,
then % =-F and g—z = —%.
This is done on page 798 at the
bottom.
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1. Suppose = z and y = y(x), so y is a function of z. We can write this
in parametric form as #(x) = (z,y(z)). We now have z = f(z,y) and
7(x) = (z,y(x)). Compute both D f(x,y) and D7(x) symbolically. Don’t
use the function f(z,y) = 2% + 3zy — 3> until the last step.

2. Use the chain rule to compute D(f(7(z))). What is dz/dz (i.e., df /dx)?

3. Since z is held constant, we know that dz/dx = 0. Use this fact, together

d «
with part 2 to explain why . —f— = _af/ax

dx fy_ 3f/3y'

4. For the curve 5 = 2% + 3xy — y3, use this formula to compute dy/dx.

6.5 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to Brainhoney and download the quiz. Once you have taken
the quiz, you can upload your work back to brainhoney and then download the
key to see how you did. If you still need to work on mastering some of the ideas,
please do so and then demonstrate your mastery though the quiz corrections.



Chapter 7

Motion

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Develop formulas for the velocity and position of a projectile, if we neglect
air resistance and consider only acceleration due to gravity. Show how to
find the range, maximum height, and flight time of the projectile.

2. Develop the T'N B frame for describing motion. Make sure you can explain
why T, N, and B are all orthogonal unit vectors, and be able to perform
the computations to find these three vectors.

3. Explain the concepts of curvature k, radius of curvature p, center of
curvature, and torsion 7. Make sure you can describe geometrically what
theses quantities mean.

4. Find the tangential and normal components of acceleration. Show how to

12
obtain the formulas ay = 4] and ay = |v]? = %, and explain what

these equations physically imply.

You’'ll have a chance to teach your examples to your peers prior to the exam.
I have created a YouTube playlist to go along with this section. There are
11 videos, each 4-6 minutes long.

e YouTube playlist for 07 - Motion and The TNB Frame.
e PDF copy of the finished product (so you can follow along on paper).

To help you organize the information we study in this chapter, there’s a
table that includes all the vectors and scalars we will discuss at the end of the
unit.

7.1 Projectile Motion

Suppose a projective is fired from a cannon with an initial speed vg. The
projectile leaves the cannon at an angle of « above the z-axis, and we’ll use
the y-axis to keep track of the height of the projectile. All the motion in this
problem occurs with a plane, and we’ll use x and y to represent motion in that
plane. Our goal is to find the velocity ¥(¢) and position 7(¢) of the projectile at
any time ¢.

We need some assumptions prior to solving.

o7


http://www.youtube.com/playlist?list=PL30EE81142B1ED1F0&feature=plcp
http://db.tt/FmEGk9p5
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e Assume the only force acting on the object is the force due to gravity. We
will neglect air resistance.

e The force due to gravity is the mass of the projectile multiplied by the
acceleration of gravity. The mass of the object will not be important in
our work here, though in future classes you may study how mass affects
energy computations.

e The projectile is shot over a small enough range that we can assume
gravity only pulls the object straight down.

e Most branches of science use the letter g to represent the magnitude of
the vertical component of acceleration, so we can write the acceleration of
the projectile as

d(t) = (0, —g) = 0i — gj.
e Our text uses the approximations g ~ 9.8 m/s® or g ~ 32 ft/s2.

To solve the next problem, you need to remember that acceleration is the
derivative of velocity, and that velocity is the derivative of position. These facts
hold true for vector-valued functions as well. Integration will help.

Problem 7.1| An object undergoes an acceleration of @(t) = (2t,—8). The
initial velocity is ¥(0) = (4,5) and the initial position is 7(0) = (1,3). Use
this information to find the velocity and position at any time ¢. [Hint: Use

integration to get velocity and position, but don’t forget your arbitrary constants.

You should be able to use the initial conditions to determine the constants.]

Problem 7.2| Suppose a projectile is fired from the point (2, yp) with an

initial velocity ¥(0) = (vg,, vy, ), and that gravity is the only force acting on the
object. So the acceleration due to gravity is d@(t) = (0, —g).

1. Show that the velocity at any time t is U(t) = (vg,, —gt + vy, )-

2. Show that the position at any time ¢ is 7(t) = (vg,t+20, —39t2 + vyot +70).

3. Give parametric equations = z(t) and y = y(¢) that give the horizontal
and vertical position of the projectile at time .

We make the following definitions for a projectile that starts at (0,0) and
hits the ground at (R, 0).

e The range is the horizontal distance R traveled by the projectile.

e The flight time is how long the projectile is in the air. It is the time ¢ at
which 7(t) = (R, 0).

e The maximum height is the largest y value obtained by the projectile.

Problem 7.3 | Answer the following questions. Assume that the projectile

was fired from the origin.

2
1. Explain why the flight time is t = Vo 9 [Hint: How long does it take to

g
reach maximum height? What should the velocity vector equal when the
object has reached maximum height?]

Watch a YouTube video.

You can practice finding position
from velocity and acceleration
with problems 13.2: 11-18, and
especially 13.2: 29.

Watch a YouTube video.


http://www.youtube.com/watch?v=dW0bm7cLB8E&list=PL30EE81142B1ED1F0&index=1&feature=plpp_video
http://www.youtube.com/watch?v=a6PHAvynNWM&list=PL30EE81142B1ED1F0&index=2&feature=plpp_video
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2

v
2. Show that the maximum height is yyax = % Then show that the range
g

2Uw0 Uyo
g

isR=

Problem 7.4| Use the results from the results from the previous problems.

(So you can work on this problem, even if you couldn’t finish the previous).

1. If the initial speed of the object is vy, with a firing angle of a above the
horizontal, rewrite v,, and vy, in terms of vy and . [What’s the difference
between speed and velocity?]

2. Rewrite your equations for ¥(t) and 7(t), so that they are in terms of v
and « instead of v, and vy,.

3. Rewrite the equations for flight time, maximum height, and range so that
they involve the speed vy and firing angle a.

This problem comes from your text. (See section 13.2.) Try it without
reading the text. It’s a fun application of the ideas above.

Problem 7.5| An archer stands at ground level and shoots an arrow at an

object which is 90 feet away in the horizontal direction and 74 ft above ground.

The arrow leaves the bow at about 6 ft above ground level (not the origin). The
archer wants the arrow to hit the target at the peak of its parabolic path. For
the purposes of this problem, Let g = 32ft/s?. What initial speed vy and firing
angle « are needed to achieve this result? [Hint: This is much easier to solve if

you first find v,, and v,,, the horizontal and vertical components of the velocity.

You may want to move the origin as well, so that you can use the formulas from
above.]

7.2 Arc Length and the Unit Tangent Vector

In the next problem, you’ll develop a formula for the arc length of a space curve
(one input, 3 outputs). We’ve essentially already done this in chapters 3 and 4,
but let’s revisit the derivation once more.

Problem 7.6| A space ship travels through the galaxy. Let #(t) = (x,y, 2)

be the position of the space ship at time ¢, with the earth at the origin (0,0, 0).

e What are the velocity and speed of the space ship at time ¢? You answers

should involve some derivatives (such as ).

e If the space ship travels for a really small time dt, then the speed is about
constant. Since distance is speed times time, about how much distance
(we'll call it ds) will the space ship travel in this short amount of time?

e As the ship travels from time ¢t = a to time ¢ = b, explain why the distance
traveled (the arc length of the path followed) is

s/ab |7 ()] dt/ab\/<flf>2+ <(j;t/>2+ (Z)z dt.

This problem was created around
the opening ceremony of the
Barcelona Spain Olympics.
Antonio Rebollo was the archer,
but he didn’t try to hit the flame
at the peak of the flight. You can
watch a YouTube video of the
opening ceremony by following the
link.

See 13.2: 19-28 for more practice.

Watch a YouTube video.

Technically, we should write

7(t) = (a(t), y(t), 2(t)). However,

we already know that z, y, and z
depend on t, hence we’ll just leave
the dependence on t off.


http://www.youtube.com/watch?v=b5gZeT4TVds
http://www.youtube.com/watch?v=jZpAU2T6iI4&list=PL30EE81142B1ED1F0&index=3&feature=plpp_video
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In all our work that follows, we want to consider space curves that have nice
smooth paths. What does this mean? We want to be able to compute tangent
vectors at any point, so we will require that a parametrization 7 be differentiable.
We also don’t want any cusps in our path (places where the direction of motion
changes instantaneously). If the speed of an object ever reaches zero, then the
object could stop moving, change direction, and then start moving instantly.
We don’t want this to happen, so we’ll assume that the velocity is never zero.

Definition 7.1. Let #(t) = (x,y,2) be a parametrization of a space curve C.
We say that 7 is smooth if 7 is differentiable, and the derivative is never the
zero vector. Under these conditions, we’ll say that C' is a smooth curve.

Problem 7.7| Consider the helical space curve 7(t) = (cost,sint,t). Find

the length of this space curve for t € [0,27]. Then find the length of the space
curve from ¢t = 0 to time ¢t = ¢ (so after ¢ seconds, what is the distance s(t)
traveled?).

Problem 7.8 | Let 7(t) = (z,y,2) be a parametrization of a smooth space
ty g S
dr dr
. Let s(t) = — —
curve. Let s(t) /0 I (1) o
[Hint: look up the fundamental theorem of calculus.] Then explain why s(t) is
an increasing function.

d
dr. Explain why d—i(t) =

(t) ‘ , the speed.

ldr

The quantity s(t) = / —(7)
0 dr

tells you how far you have traveled after ¢ seconds. The fact that s(t) is always
an increasing function if the curve is smooth allows us to talk about taking
derivatives with respect to the length traveled s instead of with respect to time
t. The idea is to ask how much a curve changes if you increase length by 1 unit,
instead of increasing time by 1 unit. We write

dr _dr/dt _ dr/dt
ds — ds/dt  |dF/dt|’
Problem 7.9| Consider again the helical space curve 7(t) = (cost,sint,t).

We already have shown that s(t) = tv/2. Solve for ¢ in terms of s (so find the
inverse of s(t)). You will now have a function of the form ¢ = ¢(s). Find the

dr is called the arc length parameter. It

d
derivative (using the matrix chain rule) of #(¢(s)). In other words, what is d—r?
s
dr dr
How are — and - related?
ds dt

Definition 7.2: Unit Tangent Vector. If 7(¢) is a parametrization of a space
curve, then we define the unit tangent vector T'(t) to be
dr dr/dt  dr/dt

T=2"2 = .
ds ds/dt |dr/dt]

‘Problem 7 .10‘ Suppose an object moves along the space curve given by
7(t) = (acost,asint, bt). Find the object’s velocity and speed. What is 3—?, the
derivative of 7 with respect to arc length? State the unit tangent vector f(t)

Watch a YouTube Video.
See 13.3: 1-10 for more practice.

You can remember ﬁ = ﬂ
dt dt
follows. We use the differential ds
to represents a change in distance,
and dt represents a change in time.
So the speed of an object is the
change in distance ds over the

change in time dt.

as

See 13.3: 11-14 for more practice.

See 13.3: 1-10 for more practice.


http://www.youtube.com/watch?v=m25oxYTfXfU&list=PL30EE81142B1ED1F0&index=4&feature=plpp_video
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7.3 The TNB Frame

The unit tangent vector T provides us with a unit vector in the direction of
motion. If we are moving along a straight line, then knowing T is sufficient
to understanding the motion. However, if we veer off the straight line, then
we would like to know in which direction we are turning (accelerating). This
direction, called the normal direction, tells us the direction of acceleration. When
you study dynamics (forces acting on moving objects), you’'ll find that knowing
the tangent and normal directions are crucial. In our class, we only have time
to develop equations for T and N , as well as practice on a few examples.

In order to find N , we first need to develop a crucial fact. This fact states that
if a vector valued function has constant length, then the function is orthogonal
to its derivative. Here’s an example.

Problem 7.11| Consider 7 (t) = (cost,sint,0) and 75(t) = (cost,sint,t).

—

dr
1. Show that 7, and d—tl are orthogonal. Is || constant?

—

dr
2. Show that 7% and d—; are not orthogonal. Is || constant?

— — 2 =

d d d
3. Is the length of % constant? Are =2 and &2 orthogonal?

dt dt?

Theorem 7.3. If a vector valued function 7(t) has constant length, then the

d
vector 7 and its derivative d—; are orthogonal for all t.

Problem 7.12: Proof of Theorem 7.3‘ Prove the theorem above. Here
are some hints [as an alternative to watching the YouTube video].

e We know that 7(t) has constant length. This means |7] = ¢ for some
constant c.

e You need to get from a magnitude to the dot product. Look in your text
for a way to relate magnitude to the dot product. See problem 2.15.

e After writing |F(t)| = ¢ in terms of a dot product (squaring both sides
may help), take the derivative of both sides. Apply the product rule to
the dot product.

The above fact is so crucial, that we’ll repeat what it says.

If the vector ¥(t) has constant length, then the vector and its deriva-
tive % are orthogonal.

Problem 7.13‘ Let 7 be a smooth parametrization of a curve. How long

- . drT
is the unit tangent vector T'(t)? Explain why T is orthogonal to a Give a

formula for computing a unit vector that is orthogonal to f(t)

Based on your answer above, we make the following definition of the principle
unit normal vector. The key idea is that this vector points in the direction of
normal acceleration.

Watch a YouTube Video.

Watch a YouTube Video.


http://www.youtube.com/watch?v=08Ygw_M-4yM&list=PL30EE81142B1ED1F0&index=6&feature=plpp_video
http://www.youtube.com/watch?v=aJttU3kS_p8&list=PL30EE81142B1ED1F0&index=7&feature=plpp_video
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Definition 7.4: Principle Unit Normal Vector. If 7(t) is a parametrization
of a space curve with unit tangent vector T'(¢), then we define the principle unit
normal vector N (t) to be the vector

N(t) = dT/dt :
AT dt|

provided of course that |dT'/dt| # 0. From problem 7.13 we know that 7' and N
are orthogonal.

Definition 7.5: Binormal Vector. If 77 is a parametrization of a smooth space
curve with unit tangent vector 7' and principle unit normal vector N, then we
define the binormal vector B to be the cross product

B=TxN.

We now have the entire TN B frame. This gives us a moving collection of
unit vectors that act like an zyz coordinate system. Many of you will use this
frame a ton in your dynamics course. The TNB frame shows up in physical
chemistry as well. A key fact to remember is that all three vectors are unit
vectors, and they are each orthogonal to the other.

Problem 7.14| Answer the following questions (this will review your knowl-
edge of the dot and cross products).

1. What is T - N? Explain. Then explain why T-B=0and N-B=0.

2. Both T and N are unit vectors. Why is B is a unit vector? [Think about
the connection between the cross product and area.]

3. We defined B =T x N. This means that N x T = —B. Is Bx T equal
to N or —N? Explain.

‘ Problem 7.15 ‘ Consider the helix 7(t) = (3cost,3sint,4t). Find the unit
tangent vector f(t), principle unit normal vector N (t), and the binormal vector
B(t).

We’ve been working with helices in all the problems up to now because the
velocity vectors have constant speed. Once the speed of the velocity vector is
no longer constant, things get a lot messier. Ask me in class to show you what
happens with the computations when you consider something like r(¢) = (¢,t2,3).
Things get ugly really fast. Fortunately, when you're working with a curve that
lies in a plane, there are some simplifications that occur.

Problem 7.16 | Suppose you have already computed the unit tangent vector

for a curve in the plane and found at a specific time it equals T = (a,b), which
could easily be rewritten as T' = (a, b, 0).

1. Find a nonzero vector that is orthogonal to T= (a,b).

2. If 7(t) = (t,t%), then we have = = (1,2t) and T(t) = \/(% Without

computing any more derivatives, what is the principle unit normal vector

—

N(t)? Draw a picture of the curve, and then at t = 1 add to your picture
the tangent and normal vectors.

See 13.4: 9-16 and 13.5: 9-16 (the
relevant parts) for more practice.

See 13.4: 7-8 for more practice,
and perhaps a hint.
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3. What is g(t)? We'll answer this in class if you are not sure.

Observation 7.6. From the problem above, we learn the following fact. If the
tangent vector to a planar curve is f(t) = (a(t),b(t)), then the principle unit
normal vector is either N(t) = (=b(t),a(t)) or N(t) = (b(t), —a(t)). You just
reverse the components, and then negate one of them. To determine which one
to negate, draw a picture.

‘Problem 7.17‘ Consider the curve 7(t) = (¢2,¢). Compute T'(t) and N(t)

(to get N (t), make sure you use the previous observation). Draw the curve and
on your graph include these vectors at t = 1.

‘ Problem 7.18 ‘ Consider the curve y = sin x, parametrized by r(t) = (¢,sint).

Start by computing T(t).

1. What are T(t), N(t), and B(t) at t = 7/2?
2. What are T(t), N(t), and B(t) at t = 7/4?
3. What are T(t), N(t), and B(t) at t = —m /47
4. What are T(t), N(t), and B(t) at ¢ = 07

You've now developed the TNB frame for describing motion. Engineers will
see this again when they study dynamics. Mathematicians who study differential
geometry will use these ideas as well. Any time you want to analyze the forces
acting on a moving object, the TNB frame may save the day. Chemists will
encounter the TNB frame briefly when they study P-chem and the motion of
subatomic particles.

7.4 Curvature and Torsion

- dr
We already know that T = d—r has length 1. This means that if we move along
s

the curve 7 using s as our parameter (not ¢), then we move along the curve at
a constant speed of 1. The fact that we are moving at speed 1 means that we

can study the properties of the curve without having to worry about our speed.
We would like to know how sharp a corner is (which we’ll call the curvature).

To determine how sharp a corner is, we must forget about speed for a bit. If
we encounter a really tight corner (so a rapid change in direction over a very

T
short distance) we would expect — to be a fairly long vector. A small change
in s results in a large change in 7. However, if we were to move along this tight

corner at a really slow speed, we would expect to be a really small vector. A
small change in ¢ would not produce much change inT.

Problem 7.19
know the unit tangent vector is T.

Suppose we are traveling along the space curve 7, and we

dr
1. If we are moving along a straight line, then what is (T? Explain.
s

dT
2. If we veer slightly off a straight line, should Is be large or small? Why?

See 13.4: 1-4 for more practice.
Use the previous problems.

Watch a YouTube Video.


http://www.youtube.com/watch?v=aJttU3kS_p8&list=PL30EE81142B1ED1F0&index=7&feature=plpp_video
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3. If we veer slightly off a straight line, and are moving extremely slow, should

T
o be large or small? Explain.

4. If we veer slightly off a straight line, and are moving extremely fast, should

dT
o be large or small? Explain.

ar dr
5. If we know T has length %, and our speed is 50, how long is E? Explain.

dT  dT/dt
[Hint: remember that 5 s // 7

, and we've seen ds/dt before.]

We will often be computing derivatives with respect to s, instead of ¢, because
we want to determine physical properties about the curve. Moving really slowly
around a tight corner won’t produce a large tagent vector because our speed is
slow. Similarly, moving quickly along a curve that hardly changes could produce
a misleading large tangent vector. However, if we remove the speed from the
problem, by taking a derivative with respect to s instead of ¢, then we’ll learn
how quickl}i the curve veers away from T as we increase in length. When we

dN -
compute e we will find how rapidly NV rotates away from the plane containing
S
dB
T and N (motion and acceleration). When we compute s e will find how
S

. dN dB .
rapidly B rotates. We’ll show that both I and s cause a rotation of NV
s s

and B about the tangent vector T. The magnitude of this rotation, as B wraps
around 7' counterclockwise, is called the torsion. Let’s formally define curvature
and torsion.

Definition 7.7: Curvature and Torsion. Let 7(¢) be a parametrization of a
smooth curve C' with unit tangent vector T'(t). The curvature vector, written
R(t), is the derivative of T with respect to arc length, which means

AT dT/dt  dT/dt

R0 =05 = dsjat ~ Tar/di]’

The length of the curvature vector is the curvature, written x = |<|. Notice that
K is a number.

The derivative of B with respect to s tells us how rapidly the plane containing
T and N rotates. We’ll define the torsion vector to be

dB _ dB/dt _ dB/dt
ds  ds/dt  |dF/dt|’

7_—’:

The torsion 7, up to a sign, is the length of this vector. We say there is positive
torsion if 7 causes a counterclockwise rotation about 7', which occurs precisely
when tau and N point in opposite directions. We can summarize this is

M
ds

o
ds

or 7T=—

b

where you choose “+47 if N and 7 point in opposite directions.

Watch a YouTube Video.


http://www.youtube.com/watch?v=MVtUc2peJn0&feature=bf_next&list=PL30EE81142B1ED1F0&lf=plpp_video
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Problem 7.20| Consider the helix r(t) = (3 cost, 3sint,4t). In problem 7.15

Lo . d
we found T, N, and B. Compute both K = T and 7 = e and then give k
s s

and 7.

Problem 7.21| Consider the helix r(t) = (4sint, 4 cost, 3t). Use a computer
to find f, N , é, R, and 7. Use your answers to then give x and 7. (When you
present on the board, just write down the 5 vectors, and then explain how you
obtained k and 7 from these vectors.)

In both examples above, you should have noticed that T was either parallel
to N or anti-parallel to N. We’ll now show this is always the case.

Problem 7.22‘ Suppose a curve 7(t) has the frame T'(t), N(t), and B(t).
dB . .
Prove that s is either parallel to IV, or points opposite N. Here are some
s

steps.

dB - -
e Why is s orthogonal to B? [Hint: How long is B? Use a key theorem
s

from earlier.]

e We know B =T x N. Compute the derivative of both sides using the

L d
product rule. Explain why % x N cancels out. Then explain why s is
S

orthogonal to T.

dB . B,
o If s is orthogonal to both B and T" why must it be either parallel or
s

anti-parallel to N?

When the curvature is nonzero, the curve bends away from the direction of
motion. We could use a circle to approximate how great this bend is. A small
change in direction would require a large circle. A large change in direction would
require a small circle. What we want is to find a circle that best approximates
the curve (kind of like a Taylor polynomial, only now we’ll use a circle.) We
want the circle to meet the curve 7 tangentially, and we want the curvature of
the circle to match the curvature of the curve. The next problem shows you the

relationship between the radius p of this circle and the curvature k of the curve.

Problem 7.23| Consider the curve 7(t) = (acost,asint).

1. Draw the curve, and state the radius p of the best approximating circle.
2. Find the curvature ¥ by performing a computation.

3. What relationship exists between p and x? If the radius p were to increase,
what would happen to k7

Definition 7.8: Circle and Center of Curvature. When the curvature
of a smooth curve is nonzero, we’ll define the radius of curvature, written p, to

1
be the reciprocal p = —. The center of curvature is the center of this circle.
K

See 13.4: 9-16 and 13.5: 9-16 (the
relevant parts) for more practice.

Watch a YouTube Video.

Watch a YouTube Video.


http://www.youtube.com/watch?v=MVtUc2peJn0&feature=bf_next&list=PL30EE81142B1ED1F0&lf=plpp_video
http://www.youtube.com/watch?v=cHez5K1EWPs&list=PL30EE81142B1ED1F0&index=8&feature=plpp_video
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Problem 7.24‘ Consider the curve 7(t) = (t,sin3t). Find the radius and
center of curvature at t = m/6 (*see the suggestion below). Draw the curve, and
draw the circle of curvature at t = w/6. (You will have shown why the center of
curvature is at 7+ pN.)

*The computations here can get pretty ugly. After getting the unit tangent

— (1,3 cos 3t)

vector T'(t) = ——=—

14 9cos?(3t)

quotient rule (don’t try to simplify, rather just write out the big mess that comes

from the quotient rule). Then immediately plug in ¢t = 7/6 into df/ dt before

trying to find K and p at t = 7/6. Most of complication will disappear. Another
option is to use problem 7.26.

, you will need to compute df/ dt. Just use the

Problem 7.25 ‘ Consider the helix 7(t) = (¢,sint,cost). Find the radius of
curvature t = 7/2. Draw the curve, and draw the circle of curvature at t = 7/2.
Then find the center of curvature at t = w/2. Guess the center of curvature at
t=mn?

Here’s two final problem related to curvature. They provide a really easy
way to compute the curvature of a function of the form y = f(z), and of any
curve in the plane. Coming up with the formulas is not necessarily easy, but
using them is fairly quick. This formula gets used in dynamics, and shows up on
the Fundamentals of Engineering exam (where you just have to use the formula,
not prove where it comes from).

‘Problem 7.26‘ The function y = f(x) can be given the parametrization
7(x) = (x, f(z)). Use this parametrization to show that the curvature is

/(@)
(+ (P

k(z) =

When a civil engineering team builds a road, they have to pay attention to
the curvature of the road. If the curvature of the road is too large, accidents
will happen and the civil engineering team will be liable. How do they make
sure the curvature never gets to large? They use the circle of curvature. When
they want to cause a road to turn, they’ll find the center of curvature, send a
surveyor out to the center, and then have the surveyor make sure that the road
follows the circle of curvature for a short distance. They actually pace out the
circle of curvature and then build the road along this circle for a hundred feet
or so. Then, they recompute the radius of curvature (if they need the direction
to change again), and pace out another circle. In this way, they can guarantee
that the curvature never gets large. In the next section we’ll see how curvature
is directly related to normal acceleration (which is what causes semis to tip, and
vehicles to slide off icy roads.)

7.5 Tangential and Normal Components of Ac-
celeration

In this section, we’ll show that you write the acceleration of an object moving
along a curve 7(t) with velocity ¥(t) as the sum

. . d . .
at)=arT +anN = %|ﬁ(t)|T + K|U2N.

See 13.4: 5.
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d
The scalars ap = a\ﬁ(t)\ and ay = k|v]? are called the tangential and normal

components of acceleration. All we are doing is ertlng the vector d(t) as the
sum of a vector parallel to T and a vector orthogonal to T. Before we decompose

the acceleration into its tangential and normal components, let’s look at two
examples to see what these facts physically represent.

Problem 7.27‘ Consider the path of an object in projectile motion that has
been fired from the origin. Draw a typical path followed by a projectile. The
acceleration a@(t) = (0, —g) acts straight down for any time t.

e Pick a point on your path before the max height occurs. At that point,
draw both T, @, and the projection of @ onto T'. Is ar positive or negative?

e At the point you chose above, is the speed of the projectile increasing
or decreasing as it climbs higher? Why is it reasonable to believe ap =
4\5(t)|? Explain.

e Now pick a point after the projectile passes the peak. Then repeat the
last two parts at this point.

Problem 7.28| Imagine that you are riding as a passenger on a road and

encounter a series of switchbacks (so the road starts to zigzag up the mountain).

Right before each bend in the road, you see a yellow sign that tells you a U-turn

is coming up, and that you should reduce your speed from 45 mi/hr to 15 mi/hr.

Assume the largest curvature along the turn is k. Recall that ay = x|9]%. The
engineers of the road designed the road so that if you are moving at 15 mi/hr,
then the normal acceleration will be at most A units.

1. Suppose that your driver (Ben) ignores the suggestion to slow down to 15
mi/hr. He keeps going 45 mi/hr through the turn. Had he slowed down,
the max acceleration would be A. You're traveling 3 times faster than
suggested. What will your maximum normal acceleration be? [It’s more
than 3A.]

2. You yell at Ben to slow down (you don’t want to die). So Ben decides
to only slow to 30 mi/hr. He figures this means you’ll only feel twice as
much acceleration as A. Explain why this line of reasoning is flawed.

3. Ben gets frustrated by the fact that he has to slow down. He complains
about the engineers who designed the road, and says, “they should have
just built a larger corner so I could keep going 45.” How much larger
should the radius of the circle be so that you can travel 45 mi/hr instead
of 15 mi/hr, and still feel the same acceleration A?

4. Which will cause the normal acceleration to decrease more, halving your
speed or halving the curvature (doubling the radius)?

. . d - .
Problem 7.29| Prove that d(t) = arT + ayN = %|17|T + k|U]2N. Here's

some hints.

e Rewrite the velocity ¥ as a magnitude |7 times a direction 7.

e We know that @(t) = £4(t) (acceleration is the derivative of velocity).

Take the derivative of 7 = |7]T by using the product rule (on the scalar
product |¢]T).

Engineers often use the equivalent
formula any = |p‘ ,as pisa

physical distance that they can
measure.

See 13.5: 17-20 for more practice.

Watch a YouTube Video.


http://www.youtube.com/watch?v=cSh2Bdd-yTg&feature=bf_next&list=PL30EE81142B1ED1F0&lf=plpp_video

CHAPTER 7. MOTION 68

e You should encounter the quantity df/ dt somewhere in your product.
Write this quantity as a magnitude times a direction. [We’ve seen dT'/dt
in much of our previous work. You’ll need to prove that dT'/dt = k|U|N.]

. L od. - .
Problem 7.30| We now know that @(t) = arT + axyN = %|17|T + k|U]2N.
Use this to prove that the curvature can be obtained from the formula
|0 % d |7 x 7|
K= — = -
|43 7|3

[Hint: cross both sides with ¥, simplify, take the magnitude of each side, and
solve for k.

Here’s a table that summarizes some of the concepts we have discussed in
this unit. The goal of this unit is to understand how the vectors in this table
are related and why.

. > dr dr/dt  7(¢)
Unit T t Vect T —-— = =
nit Tangent Vector a5~ dsjdi " ()
T dT T T
Curvature Vector K d— = dT/dt = d Kdt = (*)
ds  ds/dt |0 |7 ()|
dT’|  |dT/dt ‘df/ df‘ T'(t
Curvature (not a vector, but a scalar) | & —| = / = — = IT'¢t)]
ds ds/dt |7 |7 (¢)]
o | dT/at  T'(t) 14T 1 dT
Principal unit normal vector N ﬁ/ = — ®) =——=——
|dT/dt| |T'(t)] +ds  &[V] dt
Binormal vector B T x N
Radius of curvature p 1/k
Center of curvature at ¢ 7(t) + p(t)N(t)
3 dB
Torsion T + |—| (pick the sign) or s N
. . L o d
Tangential Component of acceleration | ar a-T= T |7
. R ds\ > 2
Normal Component of acceleration | ay i-N=k& ) = K|

7.6 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to Brainhoney and download the quiz. Once you have taken
the quiz, you can upload your work back to brainhoney and then download the
key to see how you did. If you still need to work on mastering some of the ideas,
please do so and then demonstrate your mastery though the quiz corrections.




Chapter 8

Line Integrals

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Describe how to integrate a function along a curve. Use line integrals to
find the area of a sheet of metal with height z = f(x,y) above a curve
7(t) = (x,y) and the average value of a function along a curve.

2. Find the following geometric properties of a curve: centroid, mass, center
of mass, inertia, and radii of gyration.

3. Compute the work (flow, circulation) and flux of a vector field along and
across piecewise smooth curves.

4. Determine if a field is a gradient field (hence conservative), and use the
fundamental theorem of line integrals to simplify work calculations.

You’ll have a chance to teach your examples to your peers prior to the exam.
In this chapter, we generalize integrals along the z-axis from previous
semesters in calculus to integrals along any curve.

8.1 Surface Area

In this section, we’ll first generalize the concept of the integral. We’ll approach
everything from the point of view of area, though the applications are much more
extensive. The first problem is a review problem from first-semester calculus.
The second problem generalizes the idea to integrals along a curve (which we
call a line integral). The third problem has you generalize your results. Let’s
start with a quick review of sigma notation.

20
Example 8.1. Recall that we write Z i3 as short hand for
i=1
20
it =13 428433 4% 4. 207
i=1
This notation is called sigma notation. It allows us to express really long sums
in a very short space. We could also write

4000

E T; = x30 + T31 + T32 + - - + T4000
i=30

69
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if we needed to add up the numbers starting at z3y and ending at x4990. If we
wanted to add the integers starting at 1 and ending at n, then we would write

14243+ +n=> .
=1

This first problem is a step-by-step review of how we did integrals in first-
semester calculus. It also asks you to write sums in sigma notation.

Problem 8.1| Consider the region in the xy plane that is below the function
f(z) = 22 + 1 and above the z-axis where x € [—1,2]. Think of this region as a
metal plate. We will find its surface area.

1. Draw the curve over the given bounds, and shade the region.

2. Now partition the interval [—1,2] into 6 equally-spaced parts. On your
graph, draw 6 rectangles to approximate the area under f. Use the right
endpoint of each interval to determine the height of each rectangle. The
width of each rectangle we call Az. What is Az in this example?

3. Recall from first semester calculus that we typically name the z-coordinates
of the ends of our rectangles using the notation zg, 1, 2, .... In this
example, we have

1 3
57 §,x4=1,x5=§,x6:2.
The area of the first rectangle is AA; = f(x1)Ax. The area of the second

rectangle is AAs = f(z2)Axz. The total combined area of the 6 rectangles
you drew above is the sum

rzo=—-1,21=—=,20=0, 23 =

AA) +AAy + AAs + AAy + AAs + AAg
= f(z1)Ax + f(z2)Ax + f(x3)Azx + f(zs) Az + f(x5) Az + f(x6)Awx.
Write this sum using sigma notation (i.e., using a >_).

4. Instead of using 6 rectangles, let’s now use n equally wide rectangles.
Let Az = dx be the width of each rectangle, and the right endpoint of
each segment we’ll call zq,xs,...,2,. What is the area AA; of the ith
rectangle? The sum of these n little areas is approximately the total area
under the curve, i.e.

Write this sum using sigma notation.

5. Explain why the area under f over the interval [—1,2] is A = ffl(xz—kl)da:.

The next problem should mimic the steps in the previous problem. The only
difference is that you are now integrating over a curve, not over in interval—this
is the generalization from first-semester calculus that we are looking at now.

Problem 8.2| Consider the surface in space that is below the function

f(x,y) = 9—2?—y? and above the curve C parametrized by 7(t) = (2 cost, 3sint)
for t € [0,27]. Think of this region as a metal plate that has been stood up with
its base on C' where the height above each spot is given by z = f(x,y).

1. Draw the curve C in the zy-plane.

We could have used the left
endpoint point, or the midpoint,
or any other point in each
partition. I chose the right
endpoint to make sure we all had
the same answers.

Watch a YouTube video.
See Sage for a picture of this
sheet.

See Problem 6.20


http://www.youtube.com/watch?v=sYsMcqtXBrc&list=PL04DF68E73B7ECD54&index=1&feature=plpp_video
http://aleph.sagemath.org/?z=eJx1j8EOgyAQRO98hTeBroniqQe-pFFjECupFQJro39ftPXQxN5mknk7sz1dYGXymi21yNZaEE-RSSq4siEqSEoezBQVI-jb6a4lRchBcGcY8UU0c4xv0C2vINlFUcHMe8o3Ezk1-5durENjpyA7o5AqO1ovU6-7FHAw6jHpEGT5zQbpWt8-NXqjGjdapHtRHtd8NgDnP0fZ5RQoGPzJkzBojSc1B0Dn-GRxjA-XPf8GnQ5jSA
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2. Now partition the curve into 6 parts, using equally spaced time intervals.
Draw a straight line between the spots on the curve given by 7(0), #(7/3),
7(27/3), etc. You should have 6 straight lines connecting points on an el-
lipse. The length of each segment you drew is called As (an approximation
to arc length). If we drew lots of tiny segments, we would use As = ds to
represent this length. Why does ds = /(—2sint)2 + (3 cost)2dt?

3. We'll call the t-coordinates of our partition tg, t1, t2, .... We have
to=0,t =7/3,ta =2m/3, t3 =7, t4 = 4w /3, t5 = 57 /3, tg = 2.

We need the surface area of the sheet that lies above the ellipse, but under
the function f(z,y). Above each little straight segment of length As,
we could approximate the area by assuming height of f(z,y) along the
entire segment is the same as the height above the right endpoint, i.e.
using a height of f(7(¢;)). In a 3D picture, add the surface, ellipse, and 6
rectangles. See the Sage link above.

The area of the first rectangle is Aoy = f(7(¢1))As;. The area of the
second rectangle is Aoy = f(7(t2))Asse. Using our 6 rectangles, the total
surface area of the sheet would approximately be the sum

A01+A02+A03+"'+AO’6
= f(7(t1))As1 + f(7(t2))Asy + f(F(t3))Asz + - - + f(7(t6)) Ase

Write this sum using sigma notation.

4. Instead of using 6 rectangles, let’s now use n rectangles, equally spaced
by time. Let As; be the width of the ith rectangle. Use the time values
t1,ta,...,t, to find the heights of the ith rectangle. What is the surface
area Ao; of the ith rectangle? The sum of these n little surface areas is
approximately the total surface area under f above C, i.e we have

o~ Aoy + Aoy + -+ Ao,
Write this sum using sigma notation.

5. Use your sum from the previous part to explain why the area of the metal
sheet that lies above C' and under f is given by the integral

We’ll use o (a lower-case “sigma”)
to stand for surface area.

o= / (9—2?—y?)ds = /%(9(2 cost)?—(3sint)?)y/(—2sint)2 + (3 cost)2dt.
c 0

Your results from the problem above suggest the following definition.

Definition 8.2: Line Integral. Let f be a function and C' be a piecewise
smooth curve given by the parametrization 7(t) for t € [a, b]. We require that
the composition f(7(¢)) be continuous for all ¢ € [a,b]. Then we define the line
integral of f over C' to be the integral

[ sas= [ seonea= [ o)

Notice that this definition suggests the following four steps. These four steps
are the key to computing any line integral.

dr
— | dt.
dt

1. Start by getting a parametrization 7(¢) for a < ¢t < b of the curve C.

The line integral is also called the
path integral, contour integral, or
curve integral.

When we ask you to set up a line
integral, it means that you should
do steps 1-3, so that you get an
integral with a single variable and
with bounds that you could plug
into a computer or do in

Calculus 2.

Please compute all integrals we
ask you to compute to get a
numeric answer. Compute the
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dF
2. Find the speed by computing d—; and then i

d

3. Multiply f by the speed, and replace each x, y, z with what it equals in
terms of t.

4. Integrate the product from the previous step.

Problem 8.3| Let f(z,y,2) = 22 +y? — 2z and let C be two coils of the helix

—

7(t) = (3 cost,3sint, 4t), starting at ¢ = 0. Remember that the parameterization
means x = 3cost, y = 3sint, and z = 4t. Compute fC fds. [You will have to
find the end bound yourself. How much time passes to go around two coils?)

Problem 8.4 | Consider the function f(z,y) = 3zy + 2. Let C be a circle of

radius 4 centered at the origin. Compute |, c fds. [You’ll have to come up with
your own parameterization.]

Problem 8.5| Let f(x,y,2) = 22 + 3yz. Let C be the straight line segment

from (1,0,0) to (0,4,5). Compute [, fds.

Problem 8.6| Let f(z,y) = 2% + y? — 25. Let C be the portion of the

parabola y? = z between (1, —1) and (4,2). We want to compute fc fds.
1. Draw the curve C and the function f(x,y) on the same 3D zyz axes.

2. Without computing the line integral fc fds, determine if the integral
should be positive or negative. Explain why this is so by looking at the
values of f(x,y) at points along the curve C. Is f(x,y) positive, negative,
or zero, at points along C?

3. Parametrize the curve and set up the line integral fc fds. [Hint: if you
let y = ¢, then * =7 What bounds do you put on ¢?]

4. Use technology to compute |, o fds to get a numeric answer. Was your
answer the sign that you determined above?

8.2 Average Value

The concept of averaging values together has many applications. In first-semester
calculus, we saw how to generalize the concept of averaging numbers together to
get an average value of a function. We’ll review both of these concepts. Later,
we’ll generalize average value to calculate centroids and center of mass.

Problem 8.7 | Suppose a class takes a test and there are three scores of 70,

five scores of 85, one score of 90, and two scores of 95. We will calculate the
average class score, 5, four different ways to emphasize four ways of thinking
about the averages. We are emphasizing the pattern of the calculations in this
problem, rather than the final answer, so it is important to write out each

calculation completely in the form 5= before calculating the number 5.

See 16.1: 9-32. Some problems
give you a parametrization, some
expect you to come up with one
on your own.

To practice matching
parameterizations to curves, try
16.1:1-8.

If you’ve forgotten how to
parametrize line segments, see 2.9.

See 5.18 if you forgot how to
parametrize plane curves.
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> values
number of values

1. Compute the average by adding 11 numbers together and dividing by the 5=
number of scores. Write down the whole computation before doing any
arithmetic.

2_(value-weight)

2. Compute the numerator of the fraction in the previous part by multiplying s = &=

each score by how many times it occurs, rather than adding it in the sum
that many times. Again, write down the calculation for s before doing any
arithmetic.

3. Compute 5 by splitting up the fraction in the previous part into the sum 5= 3 (value - (% of stuff))
of four numbers. This is called a “weighted average” because we are
multiplying each score value by a weight.

4. Another way of thinking about the average § is that § is the number so (number of values)s = 3" values
that if all 11 scores were 3, you'd have the same sum. Write this way of (2 weight)s =3 (value - weight)
thinking about these computations by taking the formulas for s in the
first two parts and multiplying both sides by the denominator.

In the next problem, we generalize the above ways of thinking about averages
from a discrete situation to a continuous situation. You did this in first-semester
calculus when you did average value using integrals.

Problem 8.8 | Suppose the price of a stock is $10 for one day. Then the price

of the stock jumps to $20 for two days. Our goal is to determine the average
price of the stock over the three days.

10 0<t<1
20 1<t<3’
Draw the function f, and find the area under f where t € [0, 3].

1. Let f(t) = the price of the stock for the three-day period.

2. Find a single constant f so that the areas under both f and [, above the

interval [0, 3], are the same numbers. [Hint: The area under f is just the
area of a rectangle.]

3. We found a constant f so that the area under f matched the area under
f. In other words, we solved the equation below for f:

/abfdx/abfd:c

Solve for f symbolically, without doing any of the integrals. This quantity
is called the average value of f over [a,b].

4. The formula for f in the previous part resembles at least one of the ways
of calculating averages from Problem 8.7. Which ones and why?

Ask me in class about the “ant farm” approach to average value.

Problem 8.9| Let the curve C have the parametrization 7(t) = (2 cost, 3sint). Watch a YouTube video.

Let f be the function f(z,y) =9 — 2% — 2.

1. Draw the surface f in 3D. Add to your drawing the curve C in the zy
plane. Then draw the sheet whose area is given by the integral [ o fds.

2. What’s the maximum height and minimum height of the sheet? See problem 6.20.


http://www.youtube.com/watch?v=t7T0MzfgV0Q&list=PL04DF68E73B7ECD54&index=5&feature=plpp_video
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3. We would like to find a constant height f so that the area under f above
C, is the same as area under f, above C. What integral gives us the area
under f above C? What integral gives us the area under f above C?
Explain why the average value of f along C is

e Jo fds
Jods
Connect this formula with the ways of thinking about averages from

Problem 8.7.

4. Use a computer to evaluate the integrals fc fds and [ ¢ ds, and then give
an approximation to the average value of f along C. Is your average value
between the maximum and minimum of f along C7 Why should it be?

‘ Problem 8.10‘ The temperature T'(x,y, z) at points on a wire helix C' given
by 7(t) = (sint,2t,cost) is known to be T(x,y,2) = x? + y + 22. What are the
temperatures at t =0, t =7/2, ¢t =7, t = 37/2 and ¢t = 277 You should notice
the temperature is constantly changing. Make a guess as to what the average
temperature is (share with the class why you made the guess you made—it’s
OK if you're wrong). Then compute the average temperature of the wire using
the integral formula from the previous problem.

8.3 Work, Flow, Circulation, and Flux

We now look at an exciting application of line integrals. This application helps
us study the transfer of energy (work), as well as understanding the flow of air
along a wing (circulation) and the flow of a fluid across a surface (flux).

Let’s start with a review of work. As an object moves through a vector field,
energy transfer occurs. When an object falls from high place, potential energy
is transfered to kinetic energy. The gravitational vector field is the field which

does work. Prior to problem 2.19 on page 15, we made the following statements.

If a force F' acts through a displacement d, then the most basic
definition of work is W = F'd, the product of the force and the
displacement. This basic definition has a few assumptions.

e The force F' must act in the same direction as the displacement.
e The force F' must be constant throughout the displacement.
e The displacement must be in a straight line.

We used the dot product to remove the first assumption, and we showed in
problem 2.19 that the work is simply the dot product

W=F.7,

where F is a force acting through a displacement 7. We now remove the other
two assumptions so that we can deal with variable forces acting on objects
moving along somewhat arbitrary curves. We will use the unit tangent vector T
to a curve 7 that was introduced in Definition 7.2. Recall that

7o dar dr/dt  dr/dt
~ds  ds/dt  |dr/dt|’

Please read Isaiah 40:4 and Luke
3:5. These scriptures should help
you remember how to find average
value.


https://www.lds.org/scriptures/ot/isa/40.4?lang=eng#3
https://www.lds.org/scriptures/nt/luke/3.5?lang=eng#4
https://www.lds.org/scriptures/nt/luke/3.5?lang=eng#4
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Problem 8.11: Work‘ Let F(z,y) = (M,N) be a vector field, where M

and N are functions of z and y. Let C be a curve parametrized by 7(t) = (z,y),

where = and y are functions of ¢ and ¢ € [a, b].

1. Draw a random curve on your paper. Cut the curve 7(t) into lots of little
segments. Each little segment has a length, which we call ds. If your

segments are really small, then F is almost constant on this segment.

Explain why the work done by F along this tiny segment is approximately

d(Work) = F - (Tids).
2. Explain why the work done by F along C'is

W:/ﬁ-:ﬁds:/ F —dt /M—+N dt.
C

3. If you are familiar with the units of energy, complete the following. What
are the units of F', T, ds, and dWork.

The work done by a vector field may show up in any of the following ways:
W= / F-Tds
F. ﬂ ds

L5
/.

dx dy
= M—+ N dt.
/a ( ar dt)

Notice that only two integrals above have the bounds a and b. These two
integrals are the actual formula used to compute the integral. The others are
just symbolic ways to remember the integral.

Definition 8.3: Flow and Circulation. If the vector field F represents the
velocity field of a fluid, such as airflow along a wing (so units are m/s), then the
work integral is often called flow. If the start and stop point for the curve are
the same, then we’ll call the the work integral circulation. In this case, we’ll

often add a circle to the integral, as in F. dr, to emphasize that the integral

is along a closed curve. In most cases, we’ll be computing circulation along
curves in the counterclockwise direction. If we want to emphasize the direction
we are going along a closed curve, we’ll use an arrow on the small circle on the
integral sign.

Definition 8.4: Simple Closed Curve. If C' is a smooth curve, and the start
and end points of C are the same, we call C a closed curve. If the closed curve
does not intersect itself, we call the curve a simple closed curve.

Problem 8.12‘ Let F(z,y) = (M, N) be a vector field. Let C' be a simple
closed curve parametrized by 7(t) = (z(t),y(t)). Then dF = (dz,dy).

Watch a YouTube video.

When working with a vector field
in space, we often use the notation
F(z,y,2z) = (M, N, P), so we
often write work as

fc Mdz + Ndy + Pdz.


http://www.youtube.com/watch?v=9TGZIIpEaHw&list=PL04DF68E73B7ECD54&index=2&feature=plpp_video
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1. Draw a simple closed curve to represent 7 (just draw any simple closed
curve you like). We know that the circulation (work) along C' is given by
the integral [ (M, N) - (dz,dy). Pick a spot on your curve, and draw a
tangent vector to represent (dz,dy) so that you traverse the curve using a
counterclockwise orientation.

2. What is the angle between (dz,dy) and (—dy,dx)? What is the angle
between (dz, dy) and (dy, —dz)? [Hint: see Problems 2.12 and 2.13.]

3. Which vector, (—dy,dz) or (dy, —dzx), points towards the outside of the
curve if we are going around the curve counterclockwise? Pick a few points
on your curve and explain why (dy, —dx) always points towards the outside
the curve.

When we compute the work done by a vector field along a curve, we are
focusing on how much of the vector field points in the direction of motion. The
integral fc F' - T'ds measures the flow along a curve. If we let 7 be the outward
pointing normal vector to the curve, then the integral fo F - fids measures the
flow outward across a curve. We’ll define this outward flow as “Flux.”

Definition 8.5: Flux. Let F(z,y) = (M, N) be a vector field. Let C be a
simple closed curve parametrized by 7(t) = (z,y), and oriented in the counter-
clockwise direction. We know the circulation of F along C' (the flow of F along
C) is the integral §, F - T ds = $o(M,N) - (dz,dy). The outward flux of F
across C' is the line integral

FluX:¢:?{F~ﬁd5:%(M,N)~(dy,fdx):% Mdy — Ndz.
C C C

The flux of F measures the outward flow of F across C' instead of along C. The
vector 1ids = (dy, —dx) is correct if the curve is oriented in the counterclockwise
direction (which was shown in the previous problem).

We’re now prepared to compute both work (circulation, flow) and flux. The
next 4 problems ask you to do so. The most common way to remember these,
provided the vector field is F(z,y) = (M (z,y), N(z,y)), is

Work:/de—i—Ndy Flux:/Mdy—Ndm.
C C

Problem 8.13 ‘ Consider the rotational field F = (—y, z) and the circle C of
radius 5 parametrized by 7(t) = (5cost, 5sint) for ¢ € [0, 27].

1. Draw the curve C and vector field F' on the same axes.
2. Compute the circulation (work) of F along C.
3. Compute the outward flux of F along C.

4. Can you explain why one of these integrals must be zero, and the other
must be positive? We’ll answer this in class if you are unable.

Watch a YouTube video.

If you haven’t yet, please watch
the YouTube videos for work and
flux.

‘ Problem 8.14 ‘ Consider the radial field F = (22, 2y) and curve C parametrized

by 7(t) = (3cost, 3sint) for ¢t € [0, 27].

1. Draw the curve C and vector field F on the same axes.


http://www.youtube.com/watch?v=5DNdI72XEYY&list=PL04DF68E73B7ECD54&index=4&feature=plpp_video
http://www.youtube.com/watch?v=9TGZIIpEaHw&list=PL04DF68E73B7ECD54&index=2&feature=plpp_video
http://www.youtube.com/watch?v=5DNdI72XEYY&list=PL04DF68E73B7ECD54&index=4&feature=plpp_video
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2. Compute the circulation (work) of F along C.
3. Compute the outward flux of F along C.

4. Can you explain why one of these integrals must be zero, and the other
must be positive? We’ll answer this in class if you are unable.

From the previous two problems you might ask, “Are there vector fields
where the work and flux can both be nonzero?” The next problems answer this
in the affirmative. The previous two problems just dealt with a rotation field
(where the vector field only rotates things, does not push in or out, so zero flux)
and a radial field (which only pushes out, so no circulation).

‘Problem 8.15‘ Let F = (—y,x + y) and C be the triangle with vertices
(2,0), (0,2), and (0,0).

1. Look at a drawing of C' and the vector field (see margin for the Sage link).
If we go counterclockwise around the triangle, for each side of the triangle,
guess the signs of the counterclockwise circulation and the flux (positive,
negative, zero).

2. Find the counterclockwise circulation (work) done by F along C. You'll
have three separate calculations, one for each side. You’ll need to parametrize
three line segments.

Problem 8.16 ‘ Consider the vector field F' = (2z —y, z). Let C be the curve
that starts at (—2,0), follows a straight line to (1, 3), and then back to (—2,0)
along the parabola y = 4 — 22,

1. Look at a drawing of C' and the vector field (see margin for the Sage link).
If we go counterclockwise around C, for each part of C, guess the signs of
the counterclockwise circulation and the flux (positive, negative, zero).

2. Find the flux of F across C. There are two curves to parametrize. Make
sure you traverse along the curves in the correct direction.

8.4 Physical Properties

A number of physical properties of real-world objects can be calculated using the
concepts of averages and line integrals. We explore some of these in this section.
Additionally, many of these concepts and calculations are used in statistics.

8.4.1 Centroids

Definition 8.6: Centroid. Let C be a curve. If we look at all of the z-
coordinates of the points on C', the “center” z-coordinate, Z, is the average of
all these z-coordinates. Likewise, we can talk about the averages of all of the y
coordinates or z coordinates of points on the function (g or z, respectively). The
centroid of an object is the geometric center (Z, 7, Z), the point with coordinates
that are the average x, y, and z coordinates.

Watch a YouTube video. Also, see
Sage for a picture.

See Sage.


http://www.youtube.com/watch?v=6WcN36FbeWc&list=PL04DF68E73B7ECD54&index=3&feature=plpp_video
http://aleph.sagemath.org/?z=eJw9yjEKhDAQRuF-TzKDvxLTp80lgohodMMORjZBnNtvqm0-XvE8PVB21CueTvl1Sa7zHdeav_Oeomzk0ZZ-GGGHkUH6b-6uLHrkk0IwsBOChWma5oQ9iTi_SImo77R-zliKs_wDRwwhgQ
http://aleph.sagemath.org/?z=eJxNjEEOQDAUBfdO8j-vSZWtrUs0ZUFFo0FopL09VmwnM9NSROKGVB5FQuRs91voLzuE7egnZ_1ILR5HKJQMSpComQvvVktaP1Qa6BKVMQizG5bVnmejuHg3VIvYqa_-CzduCCO3
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Problem 8.17: Centroid‘ Notice the word “average” in the definition of Watch a YouTube video.
the centroid. Use the concept of average value to explain why the coordinates
of the centroid are Formulas for the centroid.

fcxds’ fcyds7 and ngCst.
Jods Jo ds Jods

Notice that the denominator in each case is just the arc length s = fc ds.

T =

Y=

‘ Problem 8.18 ‘ Let C be the semicircular arc 7#(t) = (acost,asint) for t €
[0, 7]. Without doing any computations, make an educated guess for the centroid
(Z,7) of this arc. Then compute the integrals given in problem 8.17 to find the
actual centroid. Share with the class your guess, even if it was incorrect.

8.4.2 Mass and Center of Mass

Density is generally a mass per unit volume. However, when talking about a
curve or wire, as in this chapter, it’s simpler to let density be the mass per
unit length. Sometimes an object is made out of a composite material, and the
density of the object is different at different places in the object. For example,
we might have a straight wire where one end is aluminum and the other end
is copper. In the middle, the wire slowly transitions from being all aluminum
to all copper. The centroid is the midpoint of the wire. However, since copper
has a higher density than aluminum, the balance point (the center of mass)
would not be at the midpoint of the wire, but would be closer to the denser
and heavier copper end. In this section, we’ll develop formulas for the mass and
center of mass of such a wire. Such composite materials are engineered all the
time (though probably not our example wire). In future mechanical engineering
courses, you would learn how to determine the density § (mass per unit length)
at each point on such a composite wire.

‘ Problem 8.19: Mass‘ Suppose a wire C has the parameterization 7(t) for Watch a YouTube video.
t € |a,b]. Suppose the wire’s density at a point (z,y, z) on the wire is given by

the function é(x,y, z). You'll learn to calculate this function in a future class.

For the purposes of our class, we’ll just assume we know what d(x,y, 2) is.

1. Consider a small portion of the curve at ¢t = ¢y of length ds. Explain why
the mass of the small portion of the curve is dm = §(7(to))ds.

2. Explain why the mass m of an object is given by the formulas below
(explain why each equals sign is true):

m:/cdm:‘/céds:/abé(F(t))

dr
— | dt.
dt

Problem 8.20 ‘ A wire lies along the straight segment from (0, 2,0) to (1, 1,
The wire’s density (mass per unit length) at a point (x,y,z) is §(x,y, 2)
T+y+ 2.

1. Is the wire heavier at (0,2,0) or at (1,1, 3)?

3).

2. What is the total mass of the wire? [You’ll need to parameterize the line
as your first step—see Problem 2.9 if you need a refresher.]


http://www.youtube.com/watch?v=t7T0MzfgV0Q&list=PL04DF68E73B7ECD54&index=5&feature=plpp_video
http://www.youtube.com/watch?v=mz-Udq5TeS4&list=PL04DF68E73B7ECD54&index=6&feature=plpp_video
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The center of mass of an object is the point where the object balances.
In order to calculate the z-coordinate of the center of mass, we average the
z-coordinates, but we weight each z-coordinate with its mass. Similarly, we can
calculate the y and z coordinates of the center of mass.

The next problem helps us reason about the center of mass of a collection of
objects. Calculating the center of mass of a collection of objects is important,
for example, in astronomy when you want to calculate how two bodies orbit
each other.

‘Problem 8.21‘ Suppose two objects are positioned at the points P, =
(z1,y1,21) and Py = (22,y2, 22). Our goal in this problem is to understand the
difference between the centroid and the center of mass.

1. Find the centroid of two objects.

2. Suppose both objects have the same mass of 2 kg. Find the center of mass
by averaging the z, y, and z coordinates, weighted by how much mass is
at each coordinate.

3. If the mass of the object at point P; is 2 kg, and the mass of the object
at point P» is 3 kg, will the center of mass be closer to P; or P»?7 Give
a physical reason for your answer before doing any computations. Then

find the center of mass (Z, 7, Z) of the two points. [Hint: you should get
I = 2$§+§I2 ]
e

Problem 8.22 ‘ This problem reinforces what you just did with two points
in the previous problem. However, it now involves two people on a seesaw.
Ignore the mass of the seesaw in your work below (pretend it’s an extremely
light seesaw, so its mass is negligible compared to the masses of the people).

1. My daughter and her friend are sitting on a seesaw. Both girls have the
same mass of 30 kg. My wife stands about 1 m behind my daughter. We'll
measure distance in this problem from my wife’s perspective. We can
think of my daughter as a point mass located at (1m,0) whose mass is 30
kg. Suppose her friend is located at (5m,0). Suppose the kids are sitting
just right so that the seesaw is perfectly balanced. That means the the
center of mass of the girls is precisely at the pivot point of the seesaw.
Find the distance from my wife to the pivot point by finding the center of
mass of the two girls.

2. My daughter’s friend has to leave, so I plan to take her place on the seesaw.
My mass is 100 kg. Her friend was sitting at the point (5,0). I would like
to sit at the point (a,0) so that the seesaw is perfectly balanced. Without
doing any computations, is @ > 5 or a < 57 Explain.

3. Suppose I sit at the spot (z,0) (perhaps causing my daughter or I to have
a highly unbalanced ride). Find the center of mass of the two points (1,0)
and (z,0) whose masses are 30 and 100, respectively (units are meters and
kilograms).

4. Where should T sit so that the seesaw is perfectly balanced (what is a)?

Wikipedia has some interesting
applications of center of mass.

See Wikipedia for a seesaw
picture.


http://en.wikipedia.org/wiki/Center_of_mass
http://en.wikipedia.org/wiki/Seesaw
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Problem 8.23: Center of mass‘ In problem 8.21, we focused on a system Watch a YouTube video.
with two points (x1,y1) and (x2,y2) with masses m; and ms. The center of
mass in the z direction is given by

P L + Tama
mi + mo

1. If we consider a system with 3 points, what formula gives the center of
mass in the x direction?

2. Consider a system with n points labeled (z1,y1,21), (22,¥2,22), ...,

(Zny Yn, 2n), having masses mq, ma, ..., m, respectively. Give a for-
mula for the center of mass in the y direction (the x and z directions are
similar).

3. Suppose now that we have a wire located along a curve C. The density
of the wire is known to be §(z,y, z) (which could be different at different
points on the curve). Imagine cutting the wire into a thousand or more
tiny chunks. Each chunk would be centered at some point (z;, y;, 2;) and
have length ds;. Explain why the mass of each little chunk is dm; ~ dds;.

4. Give a formula for the center of mass in the y direction of the thousands
of points (x;, ¥, 2;), each with mass dm,. [This should almost be an exact
copy of the second part.] Then explain why

J— Jo ydm _ Jo yods
Jodm Jodds

For quick reference, the formulas for the centroid of a wire along C' are

xds ds zds
z= Je , = Je , and ZzZ= Jo . (Centroid)
Jods Jods Jods
If the wire has density 0, then the formulas for the center of mass are The quantity [, zdm is
sometimes called the first moment
B fC xdm B fC ydm _ fC’ zdm of mass about the yz-plane (so
rT=——, Y= , and Zz= s (Center of mass) z = 0). Notationally, some people
fC dm fC dm fC dm write My, = [ xds. Similarly, we

could write My, = [ ydm and

where dm = dds. Notice that the denominator in each case is just the mass M., = [, zdm. With this
m = fC dm. notation, we could write the

We'll often use the notation (z,y, z) to talk about both the centroid and the center of mass formulas as
center of mass. If no density is given in a problem, then (Z, g, Z) is the centroid. (%,7,%) = (%7 %7 %) .
If a density is provided, then (Z, ¥y, z) refers to the center of mass. If the density moomom
is constant, it doesn’t matter (the centroid and center of mass are the same,
which is what the seesaw problem showed).

Problem 8.24‘ Suppose a wire with density 6(z,y) = 2% + y lies along the
curve C' which is the upper half of a circle around the origin with radius 7.

1. Parametrize C' (find 7(¢t) and the domain for t).
2. Where is the wire heavier, at (7,0) or at (0,7)?

3. In problem 8.18, we showed that the centroid of the wire is (Z,7) =

(07 @)) We now seek the center of mass. Before computing, will Z

change? Will i change? How will each change? Explain.


http://www.youtube.com/watch?v=mz-Udq5TeS4&list=PL04DF68E73B7ECD54&index=6&feature=plpp_video
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4. Set up the integrals needed to find the center of mass. Then use technology
to compute the integrals. Give an exact answer (involving fractions), rather
than a numerical approximation.

Problem 8.25| The quantity M,, = fc xdm is sometimes called the first
moment of mass about the yz-plane (the plane x = 0). It adds up the weighted
distances from the plane x = 0. One way to view the center of mass is to ask
yourself the following question.

The mass m of a curve C' is known. If you could place all the mass
at one single spot, called (Z, 7, Z), what should Z be so that the first
moment of mass about the yz-plane does not change.

We want the moment |, o Zdm (all mass at one point) and the moment /. o xdm
(the mass is spread across infinitely many points) to be exactly the same. Use
this idea to solve for Z in the equation

/idm:/ xdm.
c c

Then similarly obtain § and z. [Hint: the number Z is a constant, whereas x is
not. Does [2fdx =2 [ fdz?]

8.4.3 Inertia and Radii of Gyration

Some of you may have already had a physics class, in which you learned that
the kinetic energy of an object with mass m moving at speed v is

1
KE = ~mv2.
2mv

One of the main reasons we are studying mass, center of mass, centroids, etc., is
so that we can understand energy. The transfer of energy (for example from
kinetic to electrical and then back from electrical to kinetic) is one of the most
important ideas in modern innovations. Our goal in this unit it to help us
understand rotational kinetic energy. We’ll show that the kinetic energy of an
object that is rotating about a line L, and has an angular velocity of w radians
per second about the line, is precisely

1
KE = §Iw2,

where [ is the (second) moment of inertia. The moment of inertia can be
obtained by integrating I = [, C(d)Qdm where d is the radius of rotation about
L, i.e. the distance from a point (z,y, z) to the axis of rotation L. If the line L
is one of the coordinate axes, then we obtain the key formulas

Im:/(y2+z2)dm, Iy:/(x2+z2)dm, I, :/(Jc2+y2)dm.
c c c

If you have never worked with kinetic energy before, you may skip the next
problem and then just practice using these formulas.

‘ Problem 8.26 ‘ Suppose that an object, whose mass is m, is attached to a
string (whose mass is so small we’ll ignore it). The object is rotated about a
point, where the angular velocity is w radians per second. The length of the
string (distance from the point to the center of rotation) is d.

Watch a YouTube video.


http://www.youtube.com/watch?v=Zyqk9SWlTyQ&list=PL04DF68E73B7ECD54&index=7&feature=plpp_video
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1. We know kinetic energy is KE = %mv? If a string is being rotated with
with angular velocity w, why is the velocity of an object, that is located
d units away from the axis of rotation, equal to v = dw? Show that the
kinetic energy of this object in rotational motion is KE = 1 (d?*m)w?®. The
quantity I = d?m is called the moment of inertia. This problem only
applies if you have a single point.

2. Suppose the point P = (z,y,2), which has mass m, is attached to a
negligible mass string. The point is rotated about the z-axis with angular
velocity w. Find the kinetic energy, using the results from the previous
problem. [So what’s the distance from (z,y, z) to the z-axis.]

3. We can think of a curve as thousands of points (z,y, z), each with mass
dm = dds. As we rotate an entire curve about the z-axis with angular
velocity w, each little piece contributes small amount of kinetic energy,
which we’ll call dKE. Explain why dKE = %(y2 + 22)w?dm.

4. Explain why the kinetic energy of the curve (when rotated about the x

axis) is
1 1
KE = - (/ (y* +z2)dm> w? = S Lw?
2 e 2

5. If we rotated about the y-axis instead, how does this formula change?

‘Problem 8.27‘ A wire follows the helix 7(t) = (3cost,4t,3sint) for t €
[0,47]. The density is 6(z,y, z) = 2% + y + 222, Set up formulas to compute I,
I,, and I,. Use software to compute the integrals. In your presentation, show
us the set up you used, and then just give us the numerical solutions.

In problem 8.25, we showed how to find the center of mass by replacing the
variable distance z in [ ¢ rdm with the constant distance Z, and then solving for
Z in the equation fc xrdm = fc xdm. The idea is simple; if all the mass were
located at one spot, what would that spot have to be for the moment of mass
to be the same. The radii of gyration are obtained in the exact same manner.
They can be thought of as a rotational center of mass.

Problem 8.28: Radii of Gyration‘ Suppose a wire lies on the curve C' Watch a YouTube video.

and has density §. The inertia about a line L we know is I, = |, c d?dm, where d
is the radius of rotation (distance to the line L). What constant radius R should
we replace the variable radius d with so that [, d*dm = [, R*dm. Explain how
to obtain the radii of gyration about the x axis.

You only needed to show how to obtain the radius of gyration about the x
axis. All three radii of gyration are found using the formulas
R fo(y2 + 22)dm R fc(x2 + 22)dm fc(xQ +y2)dm
* Jodm Y Jo dm Jodm

For the remaining 2 problems, you are asked to review the key ideas in this
section. You have to obtain a parametrization of the curve, and then just set
up the appropriate integrals.

, and R, =


http://www.youtube.com/watch?v=dsVtOw09StM&list=PL04DF68E73B7ECD54&index=8&feature=plpp_video
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‘ Problem 8.29 ‘ Consider the curve y = 4—22 for x € [—1, 2], with 6(z,y) = y.

Set up integral formulas which would give (1) the x coordinate Z of the centroid,
(2) the y coordinate g of the center of mass, (3) the moment of inertia I, about
the z-axis, and (4) the radius of gyration R, about the y axis.

‘Problem 8.30‘ Consider a straight wire which lies on the line segment
between (—2,1,0) and (0,—1,2). The density of the wire is known to be
d(z,y,2) =z +y+ 2+ 2. Set up integral formulas which would give (1) the x
coordinate Z of the centroid, (2) the z coordinate Z of the center of mass, (3)
the moment of inertia I, about the y-axis, and (4) the radius of gyration R,
about the z-axis.

8.5 The Fundamental Theorem of Line Integrals

In this final section we’ll return to the concept of work. Many vector fields are
actually the derivative of a function. When this occurs, computing work along
a curve is extremely easy. All you have to know is the endpoints of the curve,
and the function f whose derivative gives you the vector field. This function is
called a potential for a vector field. Once we are comfortable finding potentials,
we’ll show that the work done by such a vector field is the difference in the
potential at the end points. This makes finding work extremely fast.

Definition 8.7: Gradients and Potentials. Let F' be a vector field. A
potential for the vector field is a function f whose derivative equals F. Soif
Df = F, then we say that f is a potential for F. When we want to emphasize
that the derivative of f is a vector field, we call D f the gradient of f and write
Df = v fo It F has a potential, then we say that Fisa gradient field.

We'll quickly see that if a vector field has a potential, then the work done
by the vector field is the difference in the potential. If you've ever dealt with
kinetic and potential energy, then you hopefully recall that the change in kinetic
energy is precisely the difference in potential energy. This is the reason we use
the word “potential.”

Problem 8.31 ‘ Let’s practice finding gradients and potentials.

1. Let f(x,y) = 2% + 3zy + 2y>. Find the gradient of f, i.e. find Df(z,y).

Then compute D?f(x,y) (you should get a square matrix). What are Sy
and f,.7?

2. Consider the vector field F(z,y) = (2x +y, z + 4y). Find the derivative of
F(z,y) (it should be a square matrix). Then find a function f(z,y) whose
gradient is F' (i.e. Df = F). What are f;, and fy,”?

3. Consider the vector field F(z,y) = (22 + v, 3z 4 4y). Find the derivative
of F. Why is there no function f(z,y) so that Df(z,y) = F(z,y)? [Hint:
what would f;, and fy, have to equal?]

Based on your observations in the previous problem, we have the following
key theorem.

Watch a YouTube Video.

The symbol ﬁf is read “the
gradient of f” or “del f.”

Watch a YouTube Video.

See problem 6.7.


http://www.youtube.com/watch?v=8Tk2pEIOnwg&list=PL04DF68E73B7ECD54&index=9&feature=plpp_video
http://www.youtube.com/watch?v=8Tk2pEIOnwg&list=PL04DF68E73B7ECD54&index=9&feature=plpp_video
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Theorem 8.8. Let F be a vector field that is everywhere continuously differen-
tiable. Then F has a potential if and only if the derivative DF isa symmetric
matriz. We say that a matriz is symmetric if interchanging the rows and columns
results in the same matriz (so if you replace row 1 with column 1, and row 2
with column 2, elc., then you obtain the same matriz).

‘ Problem 8.32 ‘ For each of the following vector fields, find a potential, or If you haven’t yet, please watch
explain why none exists. this YouTube video.

1. F(z,y) = (2x —y, 3z + 2)
2. F(z,y) = (2z + 4y, 4z + 3y)
3. F(z,y) = (22 + 4y, 222 4 )

(
(

4. F(z,y,2) = (x + 2y + 32,22 + 3y + 42, 2z + 3y + 42)
(z,y,2) = (x+ 2y + 32,2x + 3y + 42,3z + 4y + 52)
(

6. F(z,y,2) = (x +yz, 22+ 2,2y + y)

— T x
7. F((If,y) = (sz + a,rctan(y), 1—|—y2>

If a vector field has a potential, then there is an extremely simple way to
compute work. To see this, we must first review the fundamental theorem of
calculus. The second half of the fundamental theorem of calculus states,

If f is continuous on [a,b] and F is an anti-derivative of f, then
F(b) - F(a) = [ f(2)dz
If we replace f with f/, then an anti-derivative of f’ is f, and we can write,

If f is continuously differentiable on [a,b], then f(b) — f(a) =
J2 1'(@)dz
This last version is the version we now generalize.

Theorem 8.9 (The Fundamental Theorem of Line Integrals). Suppose f is a Watch a YouTube video.
continuously differentiable function, defined along some open region containing

the smooth curve C. Let 7¥(t) be a parametrization of the curve C for t € [a,b).

Then we have

b
[ () = f((a)) :/ Df(r(t)) Dr(t) dt

Notice that if F is a vector field, and has a potential f, which means F' = D,
then we could rephrase this theorem as follows.

Suppose F is a a vector field that is continuous along some open
region containing the curve C. Suppose F has a potential f. Let A
and B be the start and end points of the smooth curve C. Then the
work done by F along C depends only on the start and end points,
and is precisely

f(B)—f(A):/Cﬁ~dF:/Cde+Ndy.

The word done by F is the difference in potential.


http://www.youtube.com/watch?v=8Tk2pEIOnwg&list=PL04DF68E73B7ECD54&index=9&feature=plpp_video
http://www.youtube.com/watch?v=5ZsCN6NN3yg&list=PL04DF68E73B7ECD54&index=11&feature=plpp_video
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If you are familiar with kinetic energy, then you should notice a key idea here.
Work is a transfer of energy. As an object falls, energy is transferred from
potential energy to kinetic energy. The total kinetic energy at the end of a fall is
precisely equal to the difference between the potential energy at the top of the
fall and the potential energy at the bottom of the fall (neglecting air resistance).
So work (the transfer of energy) is exactly the difference in potential energy.

\ Problem 8.33: Proof of Fundamental Theorem‘ Suppose f(z,y) is con- The proof of the fundamental
tinuously differentiable, and suppose that 7(t) for t € [a,b] is a parametrization theorem of line integrals is quite

hort. All d is th
of & smooth curve C. Prove that f(7(b)) — f(7(a)) = [* D (F(t) DF(t) dt. [Let fmiumenta thoorem of ¢

fundamental theorem of calculus,
g(t) = f(7(t)). Why does g(b) — g(a) = f: g’ (t)dt? Use the chain rule (matrix tggl‘%ther with the chain rule
form) to compute ¢'(t). Then just substitute things back in.] (6-10).

‘ Problem 8.34 ‘ For each vector field and curve below, find the work done by Watch a YouTube video.
F along C. In other words, compute the integral fC Mdx + Ndy or fC Mdx +

Ndy + Pdz. [Hint: if you parametrize the curve, then you've done the problem

the HARD way. You don’t need any parameterizations.]

1. Let F(z, y) = (22 + y,z + 4y) and C be the parabolic path y = 9 — 22 for See Sage.
x from —3 to 2.

2. Let ﬁ(x, y,z) = (2x +yz,2z + 22,2y + xy) and C be the straight segment See Sage.
from (2,—5,0) to (1,2,3).

Problem 8.35 ‘ Let F = (z, z,y). Let Cy be the curve which starts at (1,0,0) See Sage—Cj and Cs are in blue,
and follows a helical path (cost,sint,t) to (1,0,2m). Let Ca be the curve which and several possible Cs are shown

starts at (1,0,27) and follows a straight line path to (2,4,3). Let C3 be any in red.
smooth curve that starts at (2,4, 3) and ends at (0,1,2).
e Find the work done by F along each path C7, Cs, Cs. If you are parameterizing the

. curves, you're doing this the really
e Find the work done by F' along the path C' which follows C';, then C5, hard way. Are you using the
then Cs. potential of the vector field?

e If C is any path that can be broken up into finitely many smooth sub-paths,
and C starts at (1,0,0) and ends at (0,1, 2), what is the work done by F
along C?

Definition 8.10. We say that a vector field is conservative if the integral
fc F' - dr does not depend on the path C. We say that a curve C is piecewise
smooth if it can be broken up into finitely many smooth curves.

‘ Problem 8.36 ‘ The gravitational vector field is directly related to the radial

oo (—JJ, —Y, _Z)
field F' = @2+ 2
done by an object that moves from (1,2, —2) to (0, —3,4) along ANY path that
avoids the origin.

Find a potential for F , and then compute the work

Problem 8.37 ‘ Suppose Fisa gradient field. Let C' be a piecewise smooth
closed curve. What is [, c F - di? Explain.



http://www.youtube.com/watch?v=5ZsCN6NN3yg&list=PL04DF68E73B7ECD54&index=11&feature=plpp_video
http://aleph.sagemath.org/?z=eJxz06jQqdS01TDSqtCu1KnQNtGq1OQqyMkviS9LTS7JL4pPy0zNSdFw01EAKtQ11jHSBLIqdQx0LDU1tUHqNCx1K-KMdGCymgDJPhZ0
http://aleph.sagemath.org/?z=eJwVi7EKgDAMRPd-hWPSRtCIo6s_IdJBKwhFRYo0_XrT6R5372bIJFRwArbZiS3Etris2bAVBUHzxDv5L2zpfv1xhrgPO8zU6LMnRgWhdqwEhToaEF08rwALcO27aqiow4rmBwN1HWM
http://aleph.sagemath.org/?z=eJytkM1uhCAUhfc-hTsueMmMYNOV23mJydQYpR1SK0TItPr0hVFbm5kumnQBl597zvngUg9APKHJAT5wxImWoU440sRY78pWNx78WTevvXKulDSxpe2Mry6q8WaonrXqWtnCAdOg4zkKGlYj8gILijAhl_hIgyorbT3Ub8oPuqmiA0BjHPjQ7nR_rXGAxz0KZjVFxiLBVdrpXsER8q-7FAQWKOkJ07UtzkfSmM4M5FSSQbVkI53bgy567Le6e2SCr0wFmykZ5Dzu5bJfUa3eiR-ov3oxwfzO6tVSsm-7B_YPhuFgLllnXiDPIrPns92SEzPnhzyJP-RlMe-qvX3CbWa-4G0-a3N4P9adzTtYmnwCd8u7lQ
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Surface Area o= [,do= [, fds= j:f 9z dt
Average Value f= I ffd(is

Work, Flow, Circulation | W = [, dWork = [(F -T)ds = [, F - dif = [, Mdz + Ndy

Flux Flux = [ dFlux = [, F - fids = §, Mdy — Ndz
Mass m= [odm= [, dds
Centroid (,9,2) = (ffj} f:j; {:Zi)

Center of Mass (2,9,2) = (‘f”i,:"p fyZ:’ fZZZZ)
C C C

€COoN oment of Inertia z = | (y*+ 2%)dm, = [(x*+2%)dm, I, = | (= +y“)dm
S d) M fI i I 2 2)d I, 2 Ddm, I 2 2)d

Radius of Gyration R=./I/m
Fund. Thm of Line Int. f(B)— f(A) = [, Vf-dF

Table 8.1: A summary of the ideas in this unit.

8.6 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to Brainhoney and download the quiz. Once you have taken
the quiz, you can upload your work back to brainhoney and then download the
key to see how you did. If you still need to work on mastering some of the ideas,
please do so and then demonstrate your mastery though the quiz corrections.



Chapter 9
Optimization

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Explain the properties of the gradient, its relation to level curves and level
surfaces, and how it can be used to find directional derivatives.

2. Find equations of tangent planes using the gradient and level surfaces.
Use the derivative (tangent planes) to approximate functions, and use this
in real world application problems.

3. Explain the second derivative test in terms of eigenvalues. Use the second
derivative test to optimize functions of several variables.

4. Use Lagrange multipliers to optimize a function subject to constraints.

You’ll have a chance to teach your examples to your peers prior to the exam.

9.1 The Gradient

Recall from the previous unit that the derivative D f of a function f: R” — R
(one output dimension) is called the gradient of f, and written V f, when we
want to emphasize that the derivative is a vector field.

Problem 9.1 | Consider the functions f(z,y) = 9 — 22 —y?, g(x,y) = 2x — v,

and h(z,y) = sinx cosy.

1. Compute ﬁf(a:, y). Then draw both ﬁf and several level curves of f on
the same axes.

2. Compute Vg(z,y). Then draw both Vg and several level curves of g on
the same axes.

3. Compute ﬁh(x, y). Then draw both Vh and several level curves of h on
the same axes.

4. What relationships do you see between the gradient vector field and level
curves?

When you present in class, be prepared to provide rough sketches of the level
curves and gradients of each function.
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You’ll want a computer to help
you construct the graphs,
particularly h. Please use the
Mathematica introduction in
Brainhoney. You could use
Wolfram Alpha (use the links in
the function chapter if you forgot
how to graph).

See Sage. You can modify these
commands to help in the plots
below too.


http://aleph.sagemath.org/?z=eJxljLEOwiAURXe-oltBHybSyeFtjV_gXIIIEYM-QqmWvxejm8vNyc3J8XyFKvAg10nJOik2-u_Dpdqs0LWtgrGElh6FlqxTpMI9NEkOMAjg9Qc-xIhHE2cH9m4S9jdXerAUKZ9NxlNenGBpi5-AfjpbKGsfXLzw0UP312vubr7Si5s5NVlnUwLhXrwBPnA2AQ
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The next few problems will focus on explaining why the relationships you
saw are always true.

Problem 9.2 | Suppose 7(t) is a level curve of f(x,y).

1. Suppose you know that at ¢ = 0, the value of f at 7(0) is 7. What is the
value of f at 7(1)? [What does it mean to be on a level curve?]

2. As you move along the level curve 7, how much does f change? Use this

d
to tell the class what d—j; must equal.

3. At points along the level curve 7, we have the composite function f(7(¢)).

d
Compute the derivative d—{; using the chain rule.

4. Use your work from the previous parts to explain why the gradient always
meets the level curve at a 90° angle. We say that the gradient is normal
to level curves (i.e., a gradient vector is orthogonal to the tangent vector
of the curve).

In Section 6.3, we extended differential notation from dy = f'dz to dy =
D fdf. The key idea is that a small change in the output variables is approxi-
mated by the product of the derivative and a small change in the input variables.
As a quick refresher, if we have the function z = f(z,y), then differential
notation states that

dz
dz = [fI fy] [dy] .
Problem 9.3 | Suppose the temperature at a point in the plane is given by the

function T'(x,y) = 2% — xy — y* degrees Fahrenheit. A particle is at P = (2, 3).

1. Use differentials to estimate the change in temperature if the particle
moves 1 unit in the direction of @ = (3,4). [Hint: Find a unit vector in
that direction.]

2. What is the actual change in temperature if the particle moves 1 unit in
the direction of @ = (3,4)?

3. Use differentials to estimate the change in temperature if the particle
moves about .2 units in the direction of @ = (3,4).

We can define partial derivatives solely in terms of differential notation. We
can define derivatives in any direction in terms of differential notation.

Problem 9.4| Suppose that z = f(z,y) is a differentiable function (so the

derivative is the matrix [f; f,]). Remember to use differential notation in
this problem.

1. If (dz, dy) = (1,0), which means we’ve moved one unit in the 2 direction
while holding y constant, what is dz?

2. If (dz,dy) = (0,1), which means we’ve moved one unit in the y direction
while holding x constant, what is dz?

3. Consider the direction @ = (2,3). Find a unit vector in the direction of
@. If we move one unit in the direction of @, what is dz? [It’s all right to
leave you answer as a dot product.]
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Definition 9.1. The directional derivative of f in the direction of the unit
vector ¢ at a point P is defined to be

Daf(P) = Df(P)i=Vf-i.

We dot the gradient of f with the direction vector @. The partial derivative
of f with respect to z is precisely the directional derivative of f in the (1,0)
direction. Similarly, the partial derivative of f with respect to y is precisely
the directional derivative of f in the (0, 1) direction. This definition extends to
higher dimensions.

Note that in the definition above, we require the vector @ to be a unit vector.
If you are asked to find a directional derivative in some direction, make sure
you start by finding a unit vector in that direction. We want to deal with unit
vectors because when we say something has a slope of m units, we want to say
“The function rises m units if we run 1 unit.”

Problem 9.5| Consider the function f(x,y) =9 — 22 — 2.

1. Draw several level curves of f.

2. At the point P = (2,1), place a dot on your graph. Then draw a unit
vector based at P that points in the direction % = (3,4) [not to the point
(3,4), but in the direction @ = (3,4)]. If you were to move in the direction
(3,4), starting from the point (2,1), would the value of f increase or
decrease?

3. Find the slope of f at P = (2,1) in the direction @ = (3,4) by finding the
directional derivative. This should agree with your previous answer.

4. If you stand at @ = (—2,3) and move in the direction 7 = (1,—1), will f
increase or decrease? Find the directional derivative of f in the direction
= (1,—1) at the point Q = (-2, 3).

Problem 9.6| Recall that the directional derivative of f in the direction  is

the dot product Vf - @ = |V f||@| cos . In this problem, youwll explain why the
gradient points in the direction of greatest increase.

1. Why is the directional derivative of f the largest when 4 points in the
exact same direction as V7 [Hint: What angle maximizes the cosine
function?]

2. When @ points in the same direction as Vf, show that Dzf = |§f| In
other words, explain why the length of the gradient is precisely the slope of
f in the direction of greatest increase (the slope in the steepest direction).

3. Which direction points in the direction of greatest decrease?

Problem 9.7 | Suppose you are looking at a topographical map (see Wikipedia

for an example). On this topographical map, each contour line represents 100 ft
in elevation. You notice in one section of the map that the contour lines are
really close together, and they start to form circles around a spot on the graph.
You notice in another section of the map that the contour lines are spaced quite
far apart. Let f(z,y) be the elevation of the land, so that the topographical
map is just a contour plot of f.


http://en.wikipedia.org/wiki/Topographic_map
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1. Where is the slope of the terrain larger, in the section with closely packed
contour lines, or the section with contour lines that are spread out. In
which section will the gradient be a longer vector?

2. At the very top of a mountain, or the very bottom of a valley, will the
gradient be a long vector or a small vector? How do you locate a peak in
a topographical map?

3. Create you own topographical map to illustrate the ideas above. Just make
sure your map has a section with some contours that are closely packed
together, and some that are far apart, as well as a contour that intersects
itself. Then on your topographical map, please add a few gradient vectors,
where you emphasize which ones are long, and which ones are short. Show
us how to find a peak, as well as what the gradient vector would be at the
peak.

Theorem 9.2. Let f be a continuously differentiable function, with ¥ a level
curve of the function.

- dr
e The gradient is always normal to level curves, meaning V f - i 0.
e The gradient points in the direction of greatest increase.

e The directional derivative of f in the direction of the gradient is the length
of the gradient. Symbolically, we write Dﬁff =|Vf].

o At a mazimum or minimum, the gradient is the zero vector.

The next few problems have you practice using differentials, and then obtain
tangent lines and planes to curves and surfaces using differentials.

Problem 9.8| The volume of a cylindrical can is V(r,h) = 7r?h. Any

manufacturing process has imperfections, and so building a cylindrical can with
designed dimensions (r, h) will result in a can with dimensions (r + dr, h + dh).

1. Compute both DV (the derivative of V) and dV (the differential of V).

2. If the can is tall and slender (h is big, r is small), which will cause a larger
change in volume: an error in r or an error in h? Use dV to explain your
answer.

3. If the can is short and wide (like a tuna can), which will cause a larger
change in volume: an error in r or an error in h? Use dV to explain your
answer.

Problem 9.9| Consider the function f(z,y) = 22 + y?. Consider the level

curve C given by f(z,y) = 25. Our goal is to find an equation of the tangent
line to C at P = (3, —4).

1. Draw C. Compute Vf and add to your graph the vector ﬁf(P)

2. We know the point P = (3,—4) is on the tangent line. Let Q = (z,y)
represent another point on the tangent line. Add to your graph the point
@ and the vector PQ = (z — 3,y +4).

3. Why are V f(P) and PQ orthogonal? Use this fact to write an equation
of the tangent line.

If you’re stuck, look at a contour
plot of

fz,y) = (2+1)3=3(z+1)> —y*+2
in Sage. Then make your own
example.


http://aleph.sagemath.org/?z=eJxL06jQqdS01ajQNtSMM9Y11oKwjHQr44y0jbiS8_NK8kuL4gty8ks00nSAinWNdIw0dRQ0KqGs5Pyc_KKkxCLbkKLSVE0AbVIWvQ
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4. What is a normal vector to the line?

The previous problem had you give an equation of the tangent line to a level
curve, by using differential notation. The next problems asks you to repeat this
idea and give an equation of a tangent plane to a level surface.

Problem 9.10| Consider the function f(z,y, z) = 22 +y2 + 22. Consider the
level surface S given by f(z,y,z) = 9. Our goal is to find an equation of the
tangent plane to S at P = (1,2, —2).

1. Draw S.
2. Compute Vf. Add to your graph the vector ﬁf(P), with its base at P.

3. We know the point P = (1,2, —2) is on the tangent plane. Let Q = (z,y, 2)
be any other point on the tangent plane. What is the component form of
the vector PQ?

4. Why are V f(P) and PQ orthogonal? Use this fact to write an equation
of the tangent plane.

5. What is a normal vector to the plane?

Problem 9.11| Find an equation of the tangent plane to the hyperboloid of
one sheet 1 = 22 — y? + 22 at the point (—3,3,1).

Problem 9.12\ The two surfaces 22 + 32 4+ 22 =14 and 3x + 4y — 2z = —1
intersect in a curve C'. Draw both surfaces, and show us the curve C. Then,
at the point (2,—1,3), find an equation of the tangent line to this curve. [Hint:
The line is in both tangent planes, so it is orthogonal to both normal vectors.
The cross product gets you a vector that is orthogonal to two vectors.]

9.2 The Second Derivative Test

We start with a review problems from first-semester calculus.

‘ Problem 9.13 ‘ Let f(z) = 2% — 322, Find the critical values of f by solving
f'(z) = 0. Determine if each critical value leads to a local maximum or local
minimum by computing the second derivative. State the local maxima/minima
of f. Sketch the function using the information you discovered.

We now generalize the second derivative test to all dimensions. We'’ve already
seen that the second derivative of a function such as z = f(z,y) is a square
matrix. The second derivative test relied on understanding if a function was
concave up or concave down. We need a way to examine the concavity of f as
we approach a point (z,y) from any of the infinitely many directions. Such a
method exists, and leads to an eigenvalue/eigenvector problem. I’'m assuming
that most of you have never heard the word “eigenvalue.” We could spend an
entire semester just studying eigenvectors. We’d need a few weeks to discover
what they are from a problem-based approach. Instead, here is an example of
how to find eigenvalues and eigenvectors.
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Definition 9.3. Let A be a square matrix, so in 2D we have A = (CCL b).

d
The identity matrix [ is a square matrix with 1’s on the diagonal and zeros
everywhere else, so in 2D we have I = (1) ? . The eigenvalues of A are the

solutions A to the equation |A — M| = 0. Remember that |A| means, “Compute
the determinant of A.” So in 2D, we need to find the value A so that

8- )l-

This definition extends to any square matrix. In 3D, the eigenvalues are the
solutions to the equation

a— A\ b
c d— A

o

a b c 1 0 0 a— A\ b c
d e fl=X10 1 0]|=| d e— A f | =0.
g h 1 0 0 1 g h T— A

An eigenvector of A corresponding to A is a nonzero vector & such that AZ = Ax.

As you continue taking more upper level science courses (in physics, engi-
neering, mathematics, chemistry, and more) you’ll soon see that eigenvalues and
eigenvectors play a huge role. You’ll start to see them in most of your classes.
For now, we’ll use them without proof to apply the second derivative test. In
class, make sure you ask me to show you pictures with each problem we do, so
we can see how eigenvalues and eigenvectors appear in surfaces.

Theorem 9.4 (The Second Derivative Test). Let f(x,y) be a function so that
all the second partial derivatives exist and are continuous. The second derivative
of f, written D?f and sometimes called the Hessian of f, is a square matriz.
Let \; be the largest eigenvalue of D2 f, and Ao be the smallest eigenvalue. Then
A1 is the largest possible second derivative obtained in any direction. Similarly,
the smallest possible second derivative obtained in any direction is Ao. The
etgenvectors give the directions in which these extreme second derivatives are
obtained. The second derivative test states the following.

Suppose (a,b) is a critical point of f, meaning D f(a,b) = [0 0].

o If all the eigenvalues of D?f(a,b) are positive, then in every
direction the function is concave upwards at (a,b) which means
the function has a local minimum at (a,b).

o If all the eigenvalues of D?f(a,b) are negative, then in every
direction the function is concave downwards at (a,b). This
means the function has a local mazimum at (a,b).

o If the smallest eigenvalue of D?f(a,b) is negative, and the
largest eigenvalue of D? f(a,b) is positive, then in one direction
the function is concave upwards, and in another the function is
concave downwards. The point (a,b) is called a saddle point.

o If the largest or smallest eigenvalue of f equals 0, then the
second derivative tests yields no information.

Example 9.5. Consider the function f(z,y) = 2% — 22 + zy + y2. The first and
second derivatives are

Df(z,y):[2x—2+y,x+2y] and D2f—ﬁ ﬂ
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The first derivative is zero (the zero matrix) when both 22 — 2 4+ y = 0 and

x4+ 2y = 0. We need to solve the system of equations 2z +y = 2 and = + 2y = 0.

Double the second equation, and then subtract it from the first to obtain
O0x — 3y = 2, or y = —2/3. The second equation says that x = —2y, or that
x =4/3. So the only critical point is (4/3, —2/3).

We find the eigenvalues of D?f(4/3,—2/3) by solving the equation

2—A 1

‘ 1 2_/\’_(2—/\)(2—/\)—1_0.

Expanding the left hand side gives us 4 — 4\ + A2 — 1 = 0. Simplifying
and factoring gives us A> — 4\ +3 = (A — 3)(A — 1) = 0. This means the
eigenvalues are A = 1 and A = 3. Since both numbers are positive, the
function is concave upwards in every direction. The critical point (4/3,—2/3)
corresponds to a local minimum of the function. The local minimum is the
output f(4/3,-2/3) = (4/3)% — 2(4/3) + (4/3)(=2/3) + (—2/3)2.

A graph of f is provided on the right. The red vector (1,1) points in the
direction in which the second derivative is the largest value 3. The red vector
(=1,1) points in the direction in which the second derivative is the smallest
value 1. These vectors are called eigenvectors, and you can learn much more
about them, in particular how to find them, in a linear algebra course. For this
course, we just need to be able to find eigenvalues.

Problem 9.14‘ Consider the function f(z,y) = 22 + dzy + y>.

1. Find the critical points of f by finding when D f(x,y) is the zero matrix.
2. Find the eigenvalues of D?f at any critical points.

3. Label each critical point as a local maximum, local minimum, or saddle
point, and state the value of f at the critical point.

Problem 9.15| Consider the function f(x,y) = 23 — 3z + y? — 4y.

1. Find the critical points of f by finding when D f(x,y) is the zero matrix.

2. Find the eigenvalues of D?f at any critical points. [Hint: First compute
D?f. Since there are two critical points, evaluate the second derivative
at each point to obtain 2 different matrices. Then find the eigenvalues of
each matrix.]

3. Label each critical point as a local maximum, local minimum, or saddle
point, and state the value of f at the critical point.

Problem 9.16 | Consider the function f(x,y) = 23 + 3zy + 5.

1. Find the critical points of f by finding when D f(x,y) is the zero matrix.
2. Find the eigenvalues of D?f at any critical points.

3. Label each critical point as a local maximum, local minimum, or saddle
point, and state the value of f at the critical point.

You now have the tools needed to find optimal solutions to problems in any
dimension. Here’s a silly problem that demonstrates how we can use what we’ve
just learned.

In this example, the second
derivative is constant, so the point
(4/3,—2/3) did not change the
matrix. In general, the point will
affect your matrix. See Sage to see
a graph which shows the
eigenvectors in which the largest
and smallest second derivatives
occur.

See 14.7 for more practice.


http://aleph.sagemath.org/?q=775b0c4a-fc2c-4d39-8c30-ac5256cfb68a
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‘Problem 9.17 ‘ For my daughter’s birthday, she has asked for a Barbie
princess cake. I purchased a metal pan that’s roughly in the shape of a paraboloid
z= f(z,y) =9 — 22 —y? for z > 0. To surprise her, I want to hide a present
inside the cake. The present is a bunch of small candy that can pretty much fill a
box of any size. I’d like to know how large (biggest volume) of a rectangular box
I can fit under the cake, so that when we start cutting the cake, she’ll find her
surprise present. The box will start at z = 0 and the corners of the box (located
at (z,+y) and (—z, +y)) will touch the surface of the cake z = 9 — 2 — y2.

1. What is the function V(z,y) that we are trying to maximize?

2. If you find all the critical points of V', you’ll discover there are 9. However,
only one of these critical points makes sense in the context of this problem.
Find that critical point.

3. Use the second derivative test to prove that the critical point yields a
maximum volume.

4. What are the dimensions of the box? What’s the volume of the box?

The only thing left for me is to now determine how much candy I should buy to
fill the box. I'll take care of that.

In this problem, we’ll derive the version of the second derivative test that is
found in most multivariate calculus texts. The test given below only works for
functions of the form f : R? — R. The eigenvalue test you have been practicing
will work with a function of the form f :R™ — R, for any natural number n.

Problem 9.18: Optional‘ Suppose that f(z,y) has a critical point at (a, b).

1. Find a general formula for the eigenvalues of D2 f(a,b). Your answer will
be in terms of the second partials of f.

2. Let D = foufyy — f?

xy*

e If D <0, explain why f has a saddle point at (a,b).

o If D =0, explain why the second derivative test fails.

e If D > 0, explain why f has either a maximum or minimum at (a,b).

e If D >0, and f,(a,b) > 0, does f have a local max or local min at
(a,b). Explain.

3. The only critical point of f(z,y) = 2? 4+ 3zy + 2y? is at (0,0). Does this
point correspond to a local maximum, local minimum, or saddle point?
Give the eigenvalues (which should come instantly out of part 1). Find D,
from part 2, to answer the question.

9.3 Lagrange Multipliers

The last problem was an example of an optimization problem where we wish
to optimize a function (the volume of a box) subject to a constraint (the box
has to fit inside a cake). If you are economics student, this section may be the
key reason why you were asked to take multivariate calculus. In the business
world, we often want to optimize something (profit, revenue, cost, utility, etc.)
subject to some constraint (a limited budget, a demand curve, warehouse space,
employee hours, etc.). An aerospace engineer will build the best wing that can



CHAPTER 9. OPTIMIZATION 95

withstand given forces. Everywhere in the engineering world, we often seek to
create the “best” thing possible, subject to some outside constraints. Lagrange
discovered an extremely useful method for answering this question, and today
we call it “Lagrange Multipliers.”

Rather than introduce Cobb-Douglass production functions (from economics)
or sheer-stress calculations (from engineering), we’ll work with simple examples
that illustrate the key points. Sometimes silly examples carry the message across
just as well.

‘ Problem 9.19 ‘ Suppose an ant walks around the circle g(x,y) = 22 +y* = 1.
As the ant walks around the circle, the temperature is f(z,y) = 22 +y +4. Our
goal is to find the maximum and minimum temperatures reached by the ant as
it walks around the circle. We want to optimize f(x,y) subject to the constraint

g(:v,y) =1

1. Draw the circle g(x,y) = 1. Then, on the same set of axes, draw several
level curves of f. The level curves f = 3,4,5,6 are a good start. Then
add more (maybe at each 1/4th). If you make a careful, accurate graph,
it will help a lot below.

2. Based solely on your graph, where does the minimum temperature occur?
What is the minimum temperature?

3. If the ant is at the point (0, 1), and it moves left, will the temperature rise
or fall? What if the ant moves right?

4. On your graph, place a dot(s) where you believe the ant reaches a maximum
temperature (it may occur at more than one spot). Explain why you believe
this is the spot where the maximum temperature occurs. What about the
level curves tells you that these spots should be a maximum.

5. Draw the gradient of f at the places where the minimum and maximum
temperatures occur. Also draw the gradient of g at these spots. How are
the gradients of f and g related at these spots?

Theorem 9.6 (Lagrange Multipliers). Suppose f and g are continuously dif-
ferentiable functions. Suppose that we want to find the mazimum and minimum
values of f subject to the constraint g(x,y) = ¢ (where ¢ is some constant). Then
if a mazimum or minimum occurs, it must occur at a spot where the gradient
of f and the gradient of g point in the same, or opposite, directions. So the
gradient of g must be a multiple of the gradient of f. To find the mazimum and
minimum values (if they exist), we just solve the system of equations that result
from
Vf=AVg, and g(z,y)=c

where A 1s the proportionality constant. The maximum and minimum values
will be among the solutions of this system of equations.

Problem 9.20‘ Suppose an ant walks around the circle 22 + y? = 1. As the
ant walks around the circle, the temperature is T'(z,y) = 22 + y + 4. Our goal
is to find the maximum and minimum temperatures T reached by the ant as it
walks around the circle.

1. What function f(x,y) do we wish to optimize? What is the constraint
g(z,y) = c?
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2. Find the gradient of f and the gradient of g. Then solve the system of
equations that you get from the equations

Vf=A\Vyg, 2 49% =1
You should obtain 4 ordered pairs (x,y).

3. At each ordered pair, find the temperature. What is the maximum
temperature obtained? What is the minimum temperature obtained.

‘ Problem 9.21 ‘ Consider the curve zy? = 54 (draw it). The distance from
each point on this curve to the origin is a function that must have a minimum
value. Find a point (a,b) on the curve that is closest to the origin.

[The distance to the origin is d(z, y) = v/ + y2. This distance is minimized
when f(x,y) = 2% + y? is minimized. So use f(z,y) = 2% + y? as the function
you wish to minimize. What’s the constraint g(z,y) = ¢?]

Problem 9.22| Find the dimensions of the rectangular box with maximum
volume that can be inscribed inside the ellipsoid

[What is the function f you wish to optimize? What is the constraint g = ¢?
Try solving each equation for A\ so you can eliminate it from the problem.]

‘ Problem 9.23 ‘ Repeat problem 9.17, but this time use Lagrange multipliers.

Find the dimensions of the rectangular box of maximum volume that fits
underneath the surface z = f(x,y) = 9 — 22 — y? for z > 0.

[Hint: Let f(x,y,2) = (22)(27)(2) and g(x,y,2) = z+2%+y* = 9. You'll get
a system of 4 equations with 4 unknowns (z,y, z, A). Try solving each equation
for lambda. You know x,y, z can’t be zero or negative, so ignore those possible
cases.|

9.4 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to Brainhoney and download the quiz. Once you have taken
the quiz, you can upload your work back to brainhoney and then download the
key to see how you did. If you still need to work on mastering some of the ideas,
please do so and then demonstrate your mastery though the quiz corrections.

The most common error on this
problem is to divide both sides of
an equation by x, which could be
zero. If you do this, you’ll only get
2 ordered pairs.

See 14.8 for more practice.
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Double Integrals

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Explain how to setup and compute a double integral. Show how to
interchange the bounds of integration.

2. For planar regions, find area, mass, centroids, center of mass, moments of
inertia, and radii of gyration.

3. Explain how to change coordinate systems in integration, in particular to
polar coordinates. Explain what the Jacobian is, and show how to use it.

4. Explain how to use Green’s theorem to compute flow along and flux across
a curve.

You’ll have a chance to teach your examples to your peers prior to the exam.

10.1 Double Integrals and Applications

Before we introduce integration, let’s practice using inequalities to describe
regions in the plane. In first semester calculus, we often use the inequalities
a <z <band g(x) <y < f(x) to describe the region above g below f for x
between a and b. We trapped x between two constants, and y between two
functions. Sometimes we wrote ¢ < y < d where ¢g(y) < = < f(y) to describe
the region to the right of g and left of f for y between ¢ and d. We need to
practice writing inequalities in this form, as these inequalities will provide us
the bounds of integration for double integrals.

Problem 10.1| Consider the region R in the xy-plane that is below the line
y = x + 2, above the line y = 2, and left of the line x = 5. We can describe this
region by saying for each z with 0 < z <5, we want y to satisfy 2 <y <z + 2.
In set builder notation, we write

R={(z,y) |0<2z<5,2<y<xz+2}

1. Describe the region R by saying for each y with ¢ < y < d, we want z
to satisfy a(y) < z < b(y). In other words, find constants ¢ and d, and
functions a(y) and b(y), so that for each y between ¢ and d, the = values
must be between the functions a(y) and b(y).

97
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2. Write your last answer in the set builder notation

R={(z,y) | c<y<d,aly) <z <by)}

Problem 10.2| For each region R below, draw the region and give a set of

inequalities of the form a <z < b,¢(x) <y < d(z) or c < y < d,aly) <z < b(y).

In class, we’ll give whichever one you did not.

1. The region R is above the line x +y = 1 and inside the circle 22 + y? = 1.

2. The region R is below the line y = 8, above the curve y = 22, and to the
right of the y-axis.

3. The region R bounded by 2z +y =3, y =, and = = 0.

We now introduce double integrals. Just as single integrals gave us the area
under a function over an interval, double integrals will give us the volume under
a function, above a region in the plane. We’ll introduce double integrals by
looking at cross sections of a solid.

‘ Problem 10.3 ‘ Consider the solid domain D in space that is beneath the
surface f(x,y) = 9 — 2% — y? and above the zy-plane, where the z values satisfy

x > 0. The region is half of a parabolic solid. Our goal in this problem is to
find the volume of the solid D.

1. Draw the solid D.

2. The plane y = 0 intersects the solid, resulting in a planar region above the
xy plane and below the parabola z = 9 — 2. The plane y = 2 intersects
the solid in a region below the parabola z = 9 — 22 — (2)2. The plane
y = y; intersects the solid in the parabola y = 9 — 2% — y? for each y;
between —3 and 3. When we slice the solid along the plane y = y;, we
obtain a cross section of the surface. Explain why the area of each of these

0

cross sections is (9 — 22 — y?)dz.

3. Imagine now that you cut the surface into 6 pieces, using the plane y = y;
for each y; in {—3,—-2,—-1,0,1,2,3}. Let yo = =3, y1 = -2, ..., y6 = 3.
The change in y between each point is Ay = 1. In the plane y = y;, we

know the area under the surface is [V o-v! (9 — 2% — y?)dz. If we multiply
this area by the thickness Ay = 1, we obtain the volume of a solid (think
dV = (A)dy). Draw these solids corresponding to y5 = 0 and y4, = 1 in
your picture. Then explain why an approximation to the volume of the

entire solid D is
> ([
i=1 \/0

(9—a* - yf)dm) Ay.

3 \/9—y?
4. Explain why the volume of D equals / /
0

-3

(9 — 2% — y2)daj> dy.

See Sage.
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The integral above is called an iterated integral because you first compute
the inside integral and then you compute the outside integral (you iteratively
integrate). Often the parenthesis are not written because we know that the
inside integral should be performed first without writing the parenthesis. We
could also explicitly emphasize which variables go with each bound by writing

y=3 r=4/9—y2
/ / 9 — z? —y2dx | dy.
y=—3 =0
3 \9—y?
Problem 10.4 ‘ The bounds of the integral/ / (9 — 2% —y*)dx | dy
-3 \Jo

describe a region R in the plane, namely —3 < y < 3 and 0 < z < /9 — 2.
Draw this region R in the plane. Then give bounds to describe the region
alternately by first stating constants which trap z (so a < z < b) and then
functions which trap y (so ¢(z) <y < d(x)). Use these new bounds to write an

iterated integral
z=b y=d(z)
/ / 9 —z? —y3dx | dy
z=a y=c(x)

that gives the exact same volume of the solid D from the previous problem.

Ask me in class to show you how the answer to the previous problem could
have been obtained by considering cross sections of the original solid

Let R be some region in the plane. If we let dA = dxdy = dydx, then we can
write a little bit of volume as dV = fdA = fdxdy = fdydz. Adding up little
bits of volume gives us the double integral

v [ saa.

which equals either iterated integral we’ve been setting up above.

Problem 10.5| Consider the iterated integral/ / eyzdydx. Write the

bounds as two inequalities (0 < z < 3 and ? < y %?). Draw and shade the
region R described by these two inequalities. Then swap the order of integration
by reversing the order of your inequalities (so trap y between 2 constants and z
between 2 functions). Finally, compute the new integral by hand (you’ll need a
u-substitution).

Problem 10.6 ‘ Consider the region R in the plane that is trapped between
the curves y = 2z and y = z2. We would like to compute ffR xdA over this
region R. Set up both iterated integrals. Then compute one of them.

In the line integral chapter, we introduce the ideas of average value, centroid,
center of mass, moment of inertia, and radius of gyration. We now extend
those ideas to regions in the plane, in exactly the same way. For example, the
fC fdx

. For double
cds
integrals, we just change ds to dA, and add an integral. This gives the formula

average value formula in the line integral section was f =
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o dInfdA

JJrdA
now have dm = ddA instead of dm = dds. We obtained arc length by computing
s = fc ds (add up little bits of arc length). We can compute area by using
A= [[,dA (add up little bits of area).

. The same substitution works on all the integrals from before. We

‘ Problem 10.7 ‘ Consider the rectangular region R in the zy-plane described
by {(z,y) |2<2<11,3<y <7}

1. Set up an integral formula which would give ¥ for the centroid of R. Then
evaluate the integral.

2. State Z from geometric reasoning.

3. Set up an integral to give the moment of inertia about the y-axis if § = 5.

Note that z = 0 in the xy-plane.
4. Set up an integral to give the R, if the density is §(x,y) = zy?.

Problem 10.8| Consider the region in the plane that is bounded by the
curves z = 2 —3 and # = y — 1. A metal plate occupies this region in space, and
its temperature function on the plate is give by the function T'(z,y) = 22 + y.
Find the average temperature of the metal plate.

‘ Problem 10.9 ‘ Consider the region R that is the circular disc which is inside
the circle (z —2)? + (y+1)2 = 9. The centroid is clearly (2, —1), and the area is
A = m(3)? = 97. We can use these fact to simplify many integrals that require
integrating over the region R.

1. Compute [, 3dA =3 [[,dA. [How can area help you?]

2. Explain why [[, zdA = A for any region R, and then compute [, zdA
for the circular disc. [You don’t need to set up any integrals at all.]

3. Compute the integral [/ R 5T + 2ydA by using centroid and area facts.

Problem 10.10 ‘ Consider the region R in the zy-plane that is formed from

two rectangular regions. The first region R; satisfies z € [—2,2] and y € [0, 7].

The second region Ry satisfies « € [—5,5] and y € [7,10]. Find the centroids of
Ry, Ry and then finally R.

‘Problem 10.11‘ Let R be the region in the plane with ¢ < z < b and
g(x) <y < f(x). Let A be the area of R.

1. Set up an iterated integral to compute the area of R. Then compute the
inside integral. You should obtain a familiar formula from first-semester
calculus.

2. Set up an iterated integral formula to compute Z for the centroid. By

1 b
computing the inside integral, show why T = 1 / x(f — g)dx.
a

3. If the density depends only on x, so § = d(x), set up an iterated integral
formula to compute § for the center of mass. Explain why

b
=5 | 3 - s

When you use double integrals to
find centroids, the formulas for the
centroid are the same for both Z
and g. In other courses, you may
see the formulas on the left,
because the ideas will be
presented without requiring
knowledge of double integrals.
Integrating the inside integral
from the double integral formula
gives the single variable formulas.
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10.2 Switching Coordinates: The Jacobian

We now want to explore how to perform u-substitution in high dimensions. Let’s
start with a review from first semester calculus.

4

Problem 10.12‘ Consider the integral / e 3% .
-1

1. Let u = —3z. Solve for x and then compute dzx.

4 ~12 1
2. Explain why / e 3 dr = / el (_> du.
-1 3 3

4 3
3. Explain why/ e‘swd:c:/ e

-1 —12

4. If the u-values are between —3 and 2, what would the z-values be between?
How does the length of the w interval [—3, 2] relate to the length of the
corresponding x interval?

In the problem above, we used a change of coordinates u = —3x, or x =
—1/3u. By taking derivatives, we found that dx = —%du. The negative means
that the orientation of the interval was reversed. The fraction % tells us that
lengths dz using z coordinates will be 1/3rd as long as lengths du using u
coordinates. When we write dx = g—idu, the number % is called the Jacobian
of = with respect to u. The Jacobian tells us how lengths are altered when we
change coordinate systems. We now generalize this to polar coordinates. Before
we're done with this section, we’ll generalize the Jacobian to any change of
coordinates.

Theorem 10.1. If we use the polar coordinate transformation x = rcosf,y =
rsinf, then we can switch from (x,y) coordinates to (r,0) coordinates if we use

dxdy = |r|drd®.

The number |r| is called the Jacobian of x and y with respect to r and 6. If we
require all bounds for r to be nonnegative, we can ignore the absolute value. If
R,y is a region in the xy plane that corresponds to the region R,.¢ in the r0
plane (where r > 0), then we can write

I,

We'll prove later why the Jacobian is |r|. For now, we need some practice
using this idea. We start by describing regions using inequalities on r and 6.
Ask me in class to give you an informal picture approach that explains why
dxdy = rdrdf.

f(z,y)dady = // f(rcos@,rsin@)r drdf.
RTQ

Yy

‘ Problem 10.13 ‘ For each region R below, draw the region in the xzy-plane.
Then give a set of inequalities of the form a < r < b,a(r) < 0 < B(r) or
a <8< pBa(f) <r <bf). For example, if the region is the inside of the circle
22 4+ y? =9, then we could write 0 < 0 <27, 0 < r < 3.

1. The region R is the quarter circle in the first quadrant inside the circle
x? 4+ y? = 25.

2. The region R is below y = v/9 — 22, above y = z, and to the right of
z=0.
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3. The region R is the triangular region below y = v/3x, above the z-axis,
and to the left of z = 1.

Problem 10.14‘ Consider the opening problem for this unit. We want to See Sage.

find the volume under f(z,y) = 9— 2% —y? where z > 0 and z > 0. We obtained
the integral formula

)
/ / FdA = / / 0 Pdedy
=-3Jz=0

1. Write bounds for the region R by giving bounds for r and 6.

2. Rewrite the double integral as an iterated integral with bounds for r and
6. Don’t forget the Jacobian (as dzdy = rdrd®).

3. Compute the integral in the previous part by hand. [Suggestion: you’ll
want to simplify 9 — 22 — y? to 9 — r? before integrating.]

Problem 10.15| Find the centroid of a semicircular disc of radius a (y > 0).
Actually compute any integrals.

After doing this, in class we’ll set up the integral formulas needed to find R,
the radius of gyration about the y-axis, assuming the density is d(z,y) = 22 + 9.

Vi—z2

Problem 10.16| Compute the integral _
P & //1 (T +22 1 42)?

try switching coordinate systems.]

We're now ready to define the Jacobian of any transformation.

Definition 10.2. Suppose T'(u,v) = (z(u,v), y(u,v)) is a differentiable coordi-
nate transformation. To find the Jacobian of this transformation, we first find
the derivative of T'. This is a square matrix, so it has a determinant, which
should give us information about area. As the determinant may be positive
or negative, we then take the absolute value to obtain the Jacobian. So the
Jacobian of the transformation 7 is the absolute value of the determinant of
the derivative. Notationally we write

J(u,v) = =Y | det (DT (u, v))|.

Problem 10.17 ‘ Find the Jacobian of the polar coordinate transformation

2 =rcosf and y = rsinf (so T(r,0) = (rcos,rsind)).

Problem 10.18 ‘ Consider the transformation u =z 4 2y and v =2x — y

1. Solve for  and y in terms of v and v. Then compute the Jacobian 85”"”3.

2. We were give v and v in terms of x and y, so we could have directly

computed ggz;’g Do so now.

5dydz. [Hint:

For a tongue twister, say “the
absolute value of the determinant
of the derivative” ten times really
fast.
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o(z,y)
O(u,v)

A(u,v)

and 5oy -

3. Make a conjecture about the relationship between

Theorem 10.3. Suppose that f is integrable over a region Ry, in the xy plane.

Suppose that T'(u,v) = (x(u,v),y(u,v)) is a coordinate transformation that has
9(z,y)
O(u,v)
the region Ry, in the xy-plane. Provided the Jacobian is nonzero except possibly
on regions with zero area, we can then write

the Jacobian

. Suppose the region R, in the uv-plane corresponds to

x xdy = xz(u,v uva(x’y)uv
/wa( ey = [ gt ),y o) G dude

We can remember this in differential form as

_ Oz,y)
dxdy = . v) dudv.

Let’s use this to rapidly find the area inside of an ellipse.

y 2

2
Problem 10.19 ‘ Consider the region R inside the ellipse (E) + (3) =1.
a

We'll consider the change of coordinates given by u = (x/a) and v = (y/b).
1. Draw the region R in the zy-plane. After substituting v = z/a and

v = y/b, draw the region Ry, in the uwv-plane. You should have a circle.

What is the area inside this circle in the wv-plane?

(z,y)

. Show how to
(u,v

2. Solve for z and y, and then compute the Jacobian

A(u,v)
O(x,y)’

3. We know the area in the zy-plane of the ellipse is [, Ra, dxdy. Use the

get the same result from directly computing

previous theorem to switch to an integral over the region R,,. Then
evaluate this integral by using facts about area so prove that the area in
the zy plane is wab. [Hint: you don’t actually have to set up any bounds,
rather just reduce this to an area integral over the region R,,.]

Problem 10.20‘ Let R be the region in the plane bounded by the curves

r+2y=1,2x+2y =4, 2x —y =0, and 2z — y = 8 We want to compute
the integral [[, zdxzdy. Draw the region R in the xy-plane. Use the change of
coordinates u = = + 2y and v = 2x — y to evaluate this integral. Make sure you
provide a sketch of the region R, in the uv-plane (it should be a rectangle).
[Hints: what are the bounds for u and v? You’ll want to solve for z and y in
terms of u and v, and then you’ll need a Jacobian.]

‘Problem 10.21 ‘ Use the transformation v = 3z + 2y and v = x + 4y to
evaluate the integral

/ / (327 + l4zy + 8y?)dzdy = / / (3% + 2y) (= + 4y)dxdy
R R

for the region R that is bounded by the lines y = —(3/2)z 4+ 1, y = —(3/2)x + 3,
y=—(1/4)x, and y = (-1/4)x + 1.

This is problem 7 in section 15.8.
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10.3 Green’s Theorem

Now that we have double integrals, it’s time to make some of our circulation
and flux problems from the line integral section get extremely simple. We’ll
start by defining the circulation density and flux density for a vector field

—

F(z,y) = (M, N) in the plane.

Definition 10.4: Circulation Density and Flux Density (Divergence).

Let F(z,y) = (M, N) be a continuously differentiable vector field. At the point
(z,y) in the plane, create a circle C, of radius a centered at (x,y), where the

area inside of C, is A, = ma?. The quotient T F . Tds is a circulation per
a JC,

1 .
area. The quotient T 7{ F' - nds is a flux per area.
a JC,

e The circulation density of F' at (z,y) we define to be

ON OM .1 = o, .. 1
%_Ty:Nl_My:gl,liR)Afa CaFdr—i%j%iaMd-r‘i‘Ndy

e The divergence, or flux density, of F at (z,y) we define to be

OM AN ! T |
%‘Fainyrﬁ’Ny—ill}%Afaﬁ F'ndsig%ﬁaMdyNdI.

In the definitions above, we could have replaced the circle C, with a square
of side lengths a centered at (x,y) with interior area A4,. Alternately, we could
have chosen any collection of curves C, which “shrink nicely” to (z,y) and have
area A, inside. Regardless of which curves you chose, it can be shown that

.1 S o1 7o
Nx—My:}ng%AajiaF~Td8 and Mx-i-Ny—ilL%AafcaF'nds.

To understand what the circulation and flux density mean in a physical
sense, think of F' as the velocity field of some gas.

e The circulation density tells us the rate at which the vector field F
causes objects to rotate around points. If circulation density is positive,
then particles near (x,y) would tend to circulate around the point in a
counterclockwise direction. The larger the circulation density, the faster
the rotation. The velocity field of a gas could have some regions where
the gas is swirling clockwise, and some regions where the gas is swirling
counterclockwise.

e The divergence, or flux density, tells us the rate at which the vector field
causes object to either flee from (z,y) or come towards (z,y). For the
velocity field of a gas, the gas is expanding at points where the divergence
is positive, and contracting at points where the divergence is negative.

We are now ready to state Green’s Theorem. Ask me in class to give an
informal proof as to why this theorem is valid.

Theorem 10.5 (Green’s Theorem). Let F(z,y) = (M, N) be a continuously
differentiable vector field, which is defined on an open region in the plane that
contains a simple closed curve C' and the region R inside the curve C. Then
we can compute the counterclockwise circulation off along C, and the outward
flux ofﬁ across C' by using the double integrals

fﬁfm:// N, — MydA and fﬁ-fm:// M, + N,dA.
C R C R

We will not prove that the partial
derivative expressions Ny — My
and My + Ny are actually equal
to the limits given here. That is
best left to an advanced course.
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Let’s now use this theorem to rapidly find circulation (work) and flux.

Problem 10.22| Consider the vector field F = (2z + 3y, 4a + 5y). Start
by computing N, — M, and M, + N,. If C is the boundary of the rectangle
2<x<T7and0 <y <3, find both the circulation and flux of F along C. You
should be able to reduce the integrals to facts about area. [If you tried doing
this without Green’s theorem, you would have to parametrize 4 line segments,
compute 4 integrals, and then sum the results.]

‘ Problem 10.23 ‘ Consider the vector field F = (2% + 92,32 + 5y). Start by
computing N, — M, and M, + N,. If C is the circle (z —3)> + (y + 1) = 4

(oriented counterclockwise), then find both the circulation and flux of F along C.

You should be able to reduce the integrals to facts about the area and centroid.

Problem 10.24| Repeat the previous problem, but change the curve C to

the boundary of the triangular region R with vertexes at (0,0), (3,0), and (3,6).

You can complete this problem without having to set up the bounds on any
integrals, if you reduce the integrals to facts about area and centroids. You are
welcome to look up the centroid of a triangular region without computing it.

10.4 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to Brainhoney and download the quiz. Once you have taken
the quiz, you can upload your work back to brainhoney and then download the
key to see how you did. If you still need to work on mastering some of the ideas,
please do so and then demonstrate your mastery though the quiz corrections.

See 16.4 for more practice. Try
doing a bunch of these, as they
get really fast.



Chapter 11

Surface Integrals

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Explain how to setup surface integrals, and use them to compute surface
area, average value, centroids, center of mass, moments of inertia, and
radii of gyration.

2. Use surface integrals to compute flux across a surface, in a given direction.
3. Explain how to use Stokes’s theorem to compute circulation.

You’ll have a chance to teach your examples to your peers prior to the exam.

11.1 Surface Area and Surface Integrals

In first-semester calculus, we learned how to compute integrals fj fdx along
straight (flat) segments [a, b]. This semester, in the line integral unit, we learned
how to change the segment to a curve, which allowed us to compute integrals
fc fds along any curve C, instead of just along curves (segments) on the z-axis.

The integral f; dx = b — a gives the length of the segment [a,b]. The integral
fc ds gives the length s of the curve C.

In the double integral unit we learned how to compute double integrals
If g JdA along flat regions R in the plane. We'll now learn how to change the
flat region R into a curved surface S, and then compute integrals of the form
[Jg fdo along curved surfaces. The differential do stands for a little bit of
surface area. We already know that [/ r dA gives the area of R. We'll define
[/ do so that it gives the surface area of S.

‘ Problem 11.1 ‘ Consider the surface S given by z = 9 — 22 — y? (we’ve seen
this surface many times). A parametrization of this surface is

F(.’E,y) = (w,y,g - 1'2 - y2)

1. Draw the surface S. Add to your surface plot the parabolas given by
7(z,0), 7(z, 1), and 7(z, 2), as well as the parabolas given by 7(0,y), 7(1,y),
and 7(2,y). You should have an upside down paraboloid, with at least 6
different parabolas drawn on the surface. These parabolas should divide
the surface up into a bunch of different patches. Our goal is to find the
area of each patch, where each patch is almost like a parallelogram.

106
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2. Find Z—T and ? At the point (2, 1), draw both vectors. These vectors
4 Y

form the edges of a parallelogram. Add that parallelogram to your picture.

0
3. Show that the area of a parallelogram whose edges are the vectors 8—r(x, y)
x

—

0
and a—r is /14 422 + 4y?. [Hint: think about the cross product.]
Y

—

0
4. Find the area of the parallelogram whose edges are the vectors a—rdaz and
x
or

dy

dy, where dx and dy are to be determined.

In the previous problem, you showed that the area of the parallelogram with
edges given by %dm and g—;dy is

This little bit of area approximates the area of a tiny patch on the surface. If
we add all these areas up, we should obtain the surface area.

Definition 11.1. Let S be a surface. Let #(u,v) = (x,y, z) be a parametrization
of the surface, where the bounds on v and v form a region R in the uv plane.
Then the surface area element (representing a little bit of surface) is

do = &xg

ou Ov

dudv = |7y X 7| dudv.

The surface integral of a continuous function f(x,y, z) along the surface S is

//fxy, da—/ ff’uv‘arxar
v

If we let f =1, then the surface area of S is simply

o~ o= 1

This definition tells us how to compute any surface integral. The steps are
almost identical to the line integral steps.

dudv.

dudv

1. Start by getting a parametrization 7" of the surface S where the bounds
form a region R.

2. Find a little bit of surface area by computing do = gT 81; | dudv.

u

3. Multiply f by do, and replace each x, y, z with what they equals from
the parametrization.

4. Integrate the previous function along R, your parameterization’s bounds.

Problem 11.2 ‘ Consider the surface S given by z = 9 — 22 — 42, for z > 0.
A parametrization of this surface is

Pz, y) = (2,9,9 —2® —y?), where 9 — 2% —y* > 0.

1. Give a set of inequalities for  and y that describe the region R over which
we need to integrate. The inequalities you give should be in a form that
you can use them as the bounds of a double integral.
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2. Find do = |7 x 7| dzdy.
3. Set up the surface integral f f g do as an iterated double integral over R.

4. Convert the integral above to an integral in polar coordinates (don’t forget
the Jacobian).

Problem 11.3 ‘ Consider the surface S given by z = 9 — x2 — 42, for z > 0.
A different parametrization of this surface is

#(r,0) = (rcos@,rsinf,9 —r?), where 9 —r% > 0.

1. Give a set of inequalities for r and 6 that describe the region R,¢ over
which we need to integrate. The inequalities you give should be in a form
that you can use them as the bounds of a double integral.

2. Find do = |7, X 7| drdf.

3. Set up the surface integral f f g do as an iterated double integral over R,q.

Problem 11.4| Find, actually compute, the surface area of the surface S
given by z = 9 — 22 — y?, for z > 0. Do this by computing any of the integrals
from the previous two problems.

‘Problem 11.5‘ If a surface S is parametrized by 7(z,y) = (z,vy, f(z,y)),

show that do = /1 + f2 + f2 dady (compute a cross product). If 7(z,z) =

(z, f(x, 2), ), what does do equal (compute a cross product - you should see
a pattern)? Use the pattern you've discovered to quickly compute do for the
surface © = 4 — y? — 22, and then set up an iterated double integral that would
give the surface area of S for x > 0.

Problem 11.6 ‘ Consider the sphere 2 + y2 + 22 = a. We'll find do using
two different parameterizations.

1. If you use the rectangular parametrization 7(z,y) = (z,y, \/a? — 22 — y?),
what is do? [Hint, use the previous problem.] Why can this parametriza-

tion only be use if the surface has positive z-values?

2. If you use the spherical parametrization You’ll want to memorize this
result.

7(¢,0) = (asin ¢ cos b, asin ¢sin b, a cos @),

show that
do = (a®|sin ¢|)dpdf = (a? sin ¢)dpdo,

where we can ignore the absolute values if we require 0 < ¢ < 7. Along
the way, you’ll show that

sy X 7p = a” sin ¢(sin ¢ cos 0, sin ¢ sin 0, cos ¢).

We can compute average value, centroids, center of mass, moments of inertia,
and radii of gyration as before. We just replace dA with do, and all the formulas
are the same.
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Problem 11.7| Consider the hemisphere 2% 4 y? + 22 = a? for z > 0.

1. Set up a formula that would give Z for the centroid of the hemisphere.

2. Compute the two integrals in your formula. By doubling the bottom
integral, you’ll have also shown that the surface area of a sphere of radius
ais o = 4ma®.

3. Set up an integral formula for R,, the radius of gyration about the z axis,
provided the density is constant.

11.1.1 Flux across a surface

We now want to look at the flux of a vector field across a surface S. In the line
integral section, we defined the outward flux of a vector field F' across a curve

C to be the line integral / F. 7ids, where 7 is a normal vector point out of

region enclosed by a curve CC When we want to find the flux of a vector field
across a surface, we must state in which direction we want to compute the flux.
We then must make sure that normal vector 77 we choose to use actually points
in the desired direction. The flux of a vector field F across a surface S is the

surface integral
Flux:@://ﬁ-ﬁda.
s

The next problem will help us simplify the computation of 7ido.

Problem 11.8| Consider again the surface z = 9 — 22 — y2.

1. Using the parametrization #(z,y) = (z,v,9 — 2% — y?), find a unit normal
vector 77 to the surface so that 7 points upwards away from the z-axis.
State what do equals, as well as fido. Make sure you explain how you
know the normal vector you give is pointing upwards away from the z
axis.

2. Using the parametrization 7(r,0) = (rcos@,rsinf,9 — r?), find a unit
normal vector 7 to the surface so that 7 points downwards towards the
z-axis. State what do equals, as well as 7ido. Make sure you explain how
you know the normal vector you give is pointing downwards towards the z
axis.

[For both parts above, the computations involved were actually done in previous
problems. You just need to compile the information here.]

In the problem above, we showed that fidoc = £(7, x 7)dzdy and that
fido = £(7 X 7p)drdf. We no longer need to find the magnitude of the cross
product, but we must determine the correct sign to put on our cross product.
This shows us that we can write flux as

FluX:CI)://F”~ﬁd0:// Z*::'(:I:Fuxﬁ,)dudv.
S Ry

Problem 11.9‘ Consider the cone 22 = 22 + 32 and vector field F = (2z +
3y, x—2x,yz). Set up an iterated integral that would give the flux of F outwards
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(away from the z-axis) for the portion of the cone between z = 1 and z = 3.
[Hint: Start by parameterizing the cone by using a polar parametrization

r=rcosf,y=rsinf, z =7.

You should obtain bounds for r and # that are constants. Compute the normal
vector and look at the third component to determine if it points up or down.
Then just plug everything into the formula.

When the surface is flat, often you can determine the normal vector without
having to perform any cross products. We’ll now compute a flux of a vector
field outwards across the 6 faces of a cube.

Problem 11.10| Find the flux of F = (x+y,y, z) outward across the surface
of the cube in the first quadrant bounded by x = 2,y = 3, 2 = 5. The cube has
6 surfaces, so we have to compute the flux across all 6 surfaces. Fill in the table
below to complete the flux across each surface, and then compute each integral
to find the total flux.

Surface 7(u,v) n F(7(u,v)) F-it Flux
Back z =0 | (0,y,2) | (~=1,0,0) |  F(0,y,2) = (3,y,2) Y | [Jpaer —ydo = —jo = —(5)(15)
Front x =2 | (2,9,2) F(2,y,2) = (2+1,y,2)
Left y = 0 0 (Why?)
Right y =3 | (z,3,2) | (0,1,0) | F(z,3,2) = (z+3,3,2) | 3 30 (Why?)
Bottom z =0
Top z =3

You should be able to complete each integral by considering centroids and surface
area of each of the 6 different flat surfaces. Show that the total flux is 90.

In the double integral chapter, we learned a way to greatly simplify flux
computations when working with simple closed curves. Green’s theorem stated
that fcﬁ i ds = [[n My + NydA. The divergence of F is the quantity
div(ﬁ) = M, + Ny. This generalizes to higher dimensions, and is called the
divergence theorem. The next problem illustrates how. We’ll study this more in
the triple integral unit.

‘ Problem 11.11| Consider the exact same vector field and box as the previous

problem. So we have the vector field F= (r+y,y,2) and S is the surface of
the cube in the first quadrant bounded by z =2,y = 3,z = 5.

1. Compute the divergence of F', which is div(ﬁ) =M, + N, + P,.

2. The divergence theorem states that if S is a closed surface (has an inside
and an outside), and the inside of the surface is the solid domain D, then
the flux of F' outward across S equals the triple integral

//Sﬁﬂdo:///Ddiv(F)dV.

Use the divergence theorem to compute the flux of F across S. [Hint:
Just as the area is found by adding up little bits of area, which is what
we mean by A = [ dA, the volume is found by adding up little bits of
volume.]
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Problem 11.12 ‘ In problem 11.6, we found

fido = 7y x Tpdpdd = a® sin ¢(sin ¢ cos 0, sin ¢ sin 0, cos ¢)dpdo
for a sphere of radius a. Use this to compute the outward flux of

<_$? -, _Z>

ﬁ:
(22 4+ 42 + 22)~3/2

across a sphere of radius a. You should get a negative number since the vector
field has all arrows pointing in. [Hint: Remember that for a sphere of radius
a we have a® = 22 + y2 + z2. When you perform the dot product of F and
7i, you'll save yourself a lot of time if you remember that i - @ = |i|?; the dot
product of a vector with itself is the length squared.]

Problem 11.13| Repeat the previous problem, but this time don’t use the
formula from problem 11.6. In fact, you don’t even need to parametrize the
surface. Instead, if you are at the point (z,y,z) on a sphere of radius a, give
a formula for the outward pointing unit normal vector 7. Give this formula
by only using a geometric argument. Then find the outward flux of F =

<—J}, —-Y —Z>

(.’E2 + y2 + 22)73/2
simplifies to a constant, so that you never actually have to compute do. Then
you can use known facts about the surface area of a sphere.

across a sphere of radius a. You should find that F.i

11.2 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to Brainhoney and download the quiz. Once you have taken
the quiz, you can upload your work back to brainhoney and then download the
key to see how you did. If you still need to work on mastering some of the ideas,
please do so and then demonstrate your mastery though the quiz corrections.



Chapter 12

Triple Integrals

This unit covers the following ideas. In preparation for the quiz and exam, make
sure you have a lesson plan containing examples that explain and illustrate the
following concepts.

1. Explain how to setup and compute triple integrals, as well as how to
interchange the bounds of integration. Use these ideas to find area and
volume.

2. Explain how to change coordinate systems in integration, with an emphasis
on cylindrical, and spherical coordinates. Explain what the Jacobian of a
transformation is, and how to use it.

3. Use triple integrals to find physical quantities such as center of mass, radii
of gyration, etc. for solid regions.

4. Explain how to use the Divergence theorem to compute the flux of a vector
fields out of a closed surface.

You’ll have a chance to teach your examples to your peers prior to the exam.

12.1 Triple Integral Definition and Applications

‘ Problem 12.1 ‘ Consider the iterated integral

3 p/9—y2  p9—z?—y?
/ / / dzdzxdy.
-3Jo 0

This is an integral of the form [[[,, dV, which means along some solid region D
in the plane, we are adding up little bits of volume. This integral should give the
volume of some solid region in space. Sketch the region D in space. Compute
the inside integral, and compare this to the first problem in the double integral
unit. Then evaluate the remaining integrals (though you might want to change
coordinate systems before doing so).

When working with double integrals, there were two different ways to set up
the bounds for our integrals, as dA = dzdy = dydz. When working with triple
integrals, there are six different ways to set up the bounds for our integrals, as

dV = dxdydz = dxdzdy = dydxdz = dydzdx = dzdxdy = dzdydzx.

112
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Problem 12.2 ‘ Consider again the iterated integral

3 V9—y2  p9—z?—y?
/ / / dzdzxdy.
-3Jo 0

There are 5 other iterated integrals that are equal to this integral, by switching

the order of the bounds. One of the integrals is [, [~ ° Lf};fi% dydxdz.

Set up the equivalent integrals using the bound dydzdx and dxdzdy. We’ll look
at the remaining 2 in class (though you're welcome to finish them and present
them with your work).

Problem 12.3 ‘ Consider the iterated integral

1 1—a? Yy
/ / / dzdydzx.
-1Jo 0

The bounds for this integral describe a region in space which satisfies the 3
inequalities —1 <2 <1,0<y<1-22 and 0< 2z <.

1. Draw the solid domain D in space described by the bounds of the iterated
integral.

2. There are 5 other iterated integrals equivalent to this one. Set up the
integrals that use the bounds dydzdz and dxdzdy. We'll create the other
3 in class (though you are welcome to include them as part of your
presentation).

Problem 12.4‘ In each problem below, you’ll be given enough information
to determine a solid domain D in space. Draw the solid D and then set up an
iterated integral (pick any order you want) that would give the volume of D.
You don’t need to evaluate the integral, rather you just need to set them up.

1. The region D under the surface z = 32, above the xy-plane, and bounded
by the planes y = -1, y =1, x =0, and = = 4.

2. The region D in the first octant that is bounded by the coordinate planes,
the plane y 4+ z = 2, and the surface z = 4 — ¢2.

3. The pyramid D in the first octant that is below the planes g + % =1and

% + % = 1. [Hint, don’t let z be the inside bound.]

4. The region D that is inside both right circular cylinders 22 + 22 = 1 and
2, .2
Yy + 2z =1

We can find average value, centroids, centers of mass, moments of inertia,
and radii of gyration exactly as before, We just now need to integrate using
three integrals, and replace ds, dA or do, with dV'.

Problem 12.5| Consider the triangular wedge D that is in the first octant,

bounded by the planes % + g =1 and z = 12. In the yz plane, the wedge forms

a triangle that passes through the points (0,0, 0), (0,7,0), and (0,0,5). Set up
integral formulas that would give the centroid (Z, 7, z) of D. Actually compute
the integrals for . Then state T and z by using symmetry arguments.
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‘ Problem 12.6 ‘ Consider the tetrahedron D in the first octant that is under-
neath the plane that intersects the coordinate axes in the three point (a,0,0),
(0,b,0) and (0,0, ¢), where you can assume that a,b,c > 0.

.’1,‘2 2

1. An equation of an ellipse that passes through (a,0) and (0, b) is —24—%—2 =1.
a
An equation of a line through these same two points is z + Y—1. An
a
equation of an ellipsoid through the three points (a,0,0), (0,b,0), and
2,2

x z

(0,0,¢) is —+ ‘Z—Q + — = 1. Guess an equation of the plane through these
a c

same three points, and then verify that your guess is correct by plugging

the 3 points into your equation. This will provide you with an extremely
fast way to get an equation of a plane.

2. Set up an iterated integral that would give the volume of D.

3. If the density is 0(z,y, 2) = 3z + 2yz, set up iterated integrals that would
give the mass m and moment of inertia I, about the y-axis.

12.2 Changing Coordinate Systems: The Jaco-
bian

Just as we did with polar coordinates in two dimensions, we can compute a
Jacobian for any change of coordinates in three dimensions. We will focus on
cylindrical and spherical coordinate systems. Remember that the Jacobian of
a transformation is found by first taking the derivative of the transformation,
then finding the determinant, and finally computing the absolute value.

Problem 12.7| The cylindrical change of coordinates is

x =rcosf,y=rsinf,z = z, or in vector form C_"(r,ﬁ7 z) = (rcosf,rsind, z).
The spherical change of coordinates is
T = psin¢cosh,y = psingsinb, z = pcos¢, or in vector form
g(p, ¢,0) = (psingcosh, psin ¢ sin, pcos ).
d(z,y,2)
o(r, 0, z) =1l

If you want to make sure you don’t have to use absolute values, what must
you require?

1. Verify that the Jacobian of the cylindrical transformation is

oz, y,2)

d(p,9,0)

you want to make sure you don’t have to use absolute values, what must
you require?

2. The Jacobian of the spherical transformation is = |p*sing|. If

The previous problem shows us that we can write
dV = dadydz = rdrdfdz = p? sin ¢dpdpds,

provided we require 7 > 0 and 0 < ¢ < 7. Cylindrical coordinates are ex-
tremely useful for problems which involve cylinders, paraboloids, and cones.
Problems which involve cones and spheres often have simple integrals in spherical
coordinates.
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Problem 12.8| The double cone 22 = 22 + y? has two halves. Each half is
called a nappe. Set up an integral in the coordinate system of your choice that
would give the volume of the region that is between the xy plane and the upper
nappe of the double cone 22 = x2 + 32, and between the cylinders 22 + y2 =4
and 22 + y2 = 16. Then evaluate the integral.

Problem 12.9 ‘ Set up an integral in the coordinate system of your choice that

would give the volume of the solid ball that is inside the sphere a? = z2 + 32 + 22.
Compute the integral to give a formula for the volume of a sphere of radius a.

Then set up (don’t evaluate) an iterated integral that would give the moment of
inertia I, about the z-axis, if the density is a constant, so § = c.

Problem 12.10 ‘ Find the volume of the solid domain D in space which is
above the cone z = /22 + y2 and below the paraboloid z = 6 — 22 — y2. Use
cylindrical coordinates to set up and then evaluate your integral. You’'ll need to
find where the surface intersect, as their intersection will help you determine
the appropriate bounds.

Problem 12.11| Consider the region D in space that is inside both the
sphere 22 + y? + 22 = 9 and the cylinder 2% + y? = 4. Start by drawing the
region.

1. Set up an iterated integral in Cartesian (rectangular) coordinates that
would give the volume of D.

2. Set up an iterated integral in cylindrical coordinates that would give the
volume of D.

Problem 12.12‘ Consider the region D in space that is both inside the
sphere 22 4+ 3% + 22 = 9 and yet outside the cylinder 2% + y? = 4. Start by
drawing the region.

1. Set up two iterated integrals in cylindrical coordinates that would give the
volume of D. For one integral use the order dzdrdf. For the other, use
the order dfdrdz.

2. Set up an iterated integral in spherical coordinates that would give the
volume of D.

T pl Va—r2
Problem 12.13| The integral / / / rdzdrdf represents the volume
o Jo 3r
of solid domain D in space. Set up integrals in both rectangular coordinates

and spherical coordinates that would give the volume of the exact same region.

Problem 12.14 ‘ The temperature at each point in space of a solid occupying
the region D, which is the upper portion of the ball of radius 4 centered at the
origin, is given by T'(x,y, z) = sin(zy + z). Set up an iterated integral formula
that would give the average temperature.

See Sage.

See Sage.
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12.3 The Divergence Theorem

In definition 10.4 on page 104, we defined the divergence, or flux density, of a
vector field F at a point P to be the flux per unit area, and then stated that
div(F) = M, + N,. We now extend this to 3D.

In 3D, the flux of F across S, ffs ﬁ%’da, is a measure of flow across S where
7 is a continuous unit normal vector to S. Flux density at (z,y, 2) is found by
creating a sphere S, of radius a centered at (x,y, z) with interior volume V,
and outward normal vector 7, and considering the quotient of flux per volume

. 1 .
given by V% ffSa F - fido. By computing ili% 7 //s F - fido, we obtain the
a a

divergence of F at (z,y, 2), also called the flux density. In a future mathematics
course, we could prove that the divergence equals

i > = 0 0 0
d1vF(x,y,z)V~F(%,&y,az>~(M,N,P)
o oN  op

Oz + Oy + 0z = Mo+ Ny + P

Theorem 12.1 (Divergence Theorem). Let S be a closed surface whose interior
1s the solid domain D. Let @ be an outward pointing unit normal vector to S.
Suppose that ﬁ(cc,y, z) is a continuously differentiable vector field on some open
region that contains D. Then the outward flux of F across S can be computed
by adding up, along the entire solid D, the flux per unit volume (divergence).
Symbolically, the divergence theorem states

//Sﬁ~ﬁdo:///[)§~ﬁdv:///D(MerNerPZ)dV

for S a closed surface with interior D and outward normal 7.

‘Problem 12.15‘ Let S be the surface of the wedge in the first octant

bounded by the planes z = 1 and % + g = 1. Let F be the vector field

<x +3y2%,y% — 4z, 22 + :cy> Use the divergence theorem to compute the out-

ward flux of F across S. Make sure you draw the wedge (you may find centroids
and volume help complete this problem rapidly).

Problem 12.16 ‘ Consider the vector field F = (yz, —xz,3xz). Let D be the
solid region in space inside the cylinder of radius 4, above the plane z = 0, and
below the paraboloid z = x? + y2. The surface S consists of 3 portions, so com-
puting the flux would require a rather time consuming process of parameterizing
these 3 surfaces. Instead, use the divergence theorem to compute the outward
flux of F across the surface S.

12.4 Wrap Up

Once you have finished the problems in the section and feel comfortable with
the ideas, create a short one page lesson plan that contains examples of the key
ideas. You will get a chance to teach from this lesson plan prior to taking the
exam. Then log on to Brainhoney and download the quiz. Once you have taken
the quiz, you can upload your work back to brainhoney and then download the
key to see how you did. If you still need to work on mastering some of the ideas,
please do so and then demonstrate your mastery though the quiz corrections.
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