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Introduction

This course may be like no other course in mathematics you have ever taken.
We'll discuss in class some of the key differences, and eventually this section will
contain a complete description of how this course works. For now, it’s just a
skeleton.

I received the following email about 6 months after a student took the course:

Hey Brother Woodruff,

I was reading Knowledge of Spiritual Things by Elder Scott. I
thought the following quote would be awesome to share with your
students, especially those in Math 215 :)

Profound [spiritual] truth cannot simply be poured from
one mind and heart to another. It takes faith and dili-
gent effort. Precious truth comes a small piece at a time
through faith, with great exertion, and at times wrenching
struggles.

Elder Scott’s words perfectly describe how we acquire mathematical truth, as
well as spiritual truth.
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Chapter 1

Review

After completing this chapter, you should be able to do the following;:

1. Give a summary of the ideas you learned in 112, including graphing,
derivatives, integration, and finding area.

2. Approximate functions using differentials. Extend this idea to approximate
functions using parabolas, cubics, and polynomials of any degree (in other
words, create Taylor polynomials).

3. Explain how to perform matrix multiplication and compute determinants
of square matrices.

4. Solve systems of linear equations, and express a solution parametrically
when there are infinitely solutions.

1.1 Preparation and Suggested Homework

Most days of class we will begin by presenting in groups the material you have
prepared. Typically there will be 4 problems for each day. Each member of the
group should prepare one of these problems and come ready to teach the group
what is needed to complete this problem. In future units you will occasionally
select a problem which is entirely new to you. When this occurs, you should
look for examples similar to this problem in the text, and follow those examples
to learn how to do this problem. You will be exercising your faith to then go
and teach the class something you have never before seen modeled, and your
confidence will grow. These problems will normally be the 4th one listed on the
preparation problems, so I suggest that as a group you alternate who takes this
problem so that you all get a chance to grow.

Preparation Problems

Day 1 1e, 3a, 2g, 2c
Day 2 1f, 3b, 3d, 4a
Day 3 4e, 5h, 6b, 6e

This is a review chapter, and the content inside is designed to be a review.
However, the amount and type of reviewing that each of us needs will be unique.
At the end of this chapter, I have provided some problems you can print out and
practice. Most chapters will be connected to the textbook (Thomas’s Calculus
[?]). I will point you to problems in the textbook that you can use to help
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you master the new material. However, in this unit the material comes from
previous courses.

T suggest that you get your old calculus textbook (or head to the library to
borrow one) and open up to the derivatives chapter (sections 3.2, 3.4, 3.5, and
3.8). You should be able to compute derivatives without a calculator. Practice
differentiation and make sure you have mastered all the applicable derivative
rules (power, quotient, product, chain, trig, implicit). Then try using the first
and second derivative tests to optimize a function (4.5), and use differential (3.10)
to approximate a function. Then head to the integration section and practice
integrating, in particular try some problems which involve u-substitution (5.5
and 8.1) and integration by parts (8.2). Make sure you understand how to
use an integral to find area. After you have done this, find a College Algebra
textbook for practicing matrix multiplication, computing determinants, and
solving systems of equations.

During this week, please download Mathematica and start trying problems Click on this link to download an
with the computer (just learning to evaluate a derivative or integral, and graphing extensive Mathematica technology
a function is sufficient). You can alternately use the open source project SAGE introduction tailored to this text.
which you can use for free at sagemath.org.

1.2 Review of First Semester Calculus

1.2.1 Graphing

We need to become comfortable graphing basic functions by hand. If you have
not spent much time graphing functions by hand before this class, then please
spend some time graphing the following functions:

1 . .
22,23, 2% = sinx, cosz, tan z, arctan z, In z, €%, sinh z, cosh =
x

When we start graphing functions of several variables, knowing how to graph
basic functions like the ones above will allow us to rapidly visual 3D graphs.

1.2.2 Derivatives

We need to know and use the derivative rules for basic functions. Most calculus
textbooks have a list of all these rules on the end pages. I'll provide you a copy
of the end page of Thomas’s calculus on any quiz or exam. Many of the rules
we’ll memorize through sheer use. You should know and be able to quickly
apply the following differentiation rules:

e Power rule (z") = na" !

e Sum and difference rule (f £¢g) = f' '+ ¢

e Product and quotient rule (fg)' = f¢' + f'g
e Chain rule (f 0 g = f/(g()) - ¢'(2)

In addition to practicing the basic rules above, make sure you can use the
chain rule to do implicit differentiation.

Example 1.1: Implicit Differentiation. Let’s use implicit differentiation to
find the derivative of y = arcsin(x). We first rewrite the expression as z = siny.
We then differentiate both sides implicitly with respect to « which gives

d

—x = —siny.

dx dx


http://www.byuimath.com/resources/215-Tech-Introduction.zip
http://www.byuimath.com/resources/215-Tech-Introduction.zip
http://www.byuimath.com/resources/215-Tech-Introduction.zip
http://www.sagemath.org
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We simplify this to 1 = cos(y)y’ where we applied the chain rule to % siny to

obtain cos y%. Solving for 3’ gives us

;o 1
cos(y)’

The expression = = siny means that y is the central angle of a triangle where
1 is the length of the hypotenuse and |z| is the length of the opposite edge.
The adjacent edge then has the length /1 — 22, which means we know cosy =
+v1—22/1. We need to determine if we should use the plus sign or minus sign.
Since the range of y = arcsinz is [~F, 7], we know that cosy will always be
nonnegative and we can erase the negative sign. We finish by writing

1 1

! —

y :cosy_ V1—z2

1.2.3 Integrals

We need to be able to compute definite and indefinite integrals for any of the
basic functions mentioned above. The two integration techniques we will focus
on are integration by substitution (undoing the chain rule) and integration by
parts (undoing the product rule). While there are many other techniques for
doing integration, the two above are the crucial ones we will focus on. We
will use software (Mathematica, Sage, Maple) for performing more complicated
integrals. Let’s look at an example to review each technique.

Example 1.2: Integration by substitution. To compute [ e3*dz, first no-
tice that we know [ e“du = e+ C. We let u = 3z, which means du = 3dx or
solving for dx gives do = dg—“. We now substitute, replacing 3z with v and dx
with du/3, which yields

du 1 1.
3z u u 3x
dr = — =—-e +(C == +.
/e X /e 3 36 C 36 C

The key is to pick the right u, solve for dx, and then compute the simpler
integral (which should be on the end cover of your calculus text).

Recall the integration by parts formula is [ udv = uv— [ vdu. We obtain this
formula by simply integrating both sides of the product rule d(uv) = vdu + udv
and then solving for [udv. The key is often to pick u so that the derivative u’
is simpler and [ dv does not become more complicated.

Example 1.3: Integration by parts. To compute [z sin2zdz, we can pick
u = 2z and dv = sin 2z. Note that v’ = 2 is simpler than v = 2z, and computing

[sin2zdz = —% cos 2z does not add any extra complication. We now have
du = ldxr and v = —# Integration by parts gives
cos 2 cos 2 cos 2 sin 2
/xsin(2x)da::—x Z x_/_ "= —a Z . 1n4x

The work above can be organized into a table to simplify the work.

Tabular Integration By Parts - An organizational tool for integration
by parts

The tabular method organizes and simplifies all integration by parts problems.
This method sorts the information from multiple integration by parts into one
simple table. Let’s illustrate this method with the same example as above, where
f(z) = zsin(2x). We'll start by creating the table.

cosy = V1 —x2

siny =z
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1. Start by creating a table with two columns. I like to put a D above the
first column and an I above the second column (for reasons you’ll see in
moment).

2. In the first column we place a factor which will get simpler with differenti-
ation (what we called u above). Here we place x on the left.

3. In the second column we place the rest of the integrand, which needs to be
something we can integrate and does not make the problem more complex.
Here we place sin(2z) on the right.

4. We now differentiate the function in the first column and and place the
derivative below the function. We can repeat this step several times,
adding a new row each time, stopping when further differentiation will no
longer simplify the problem. Here we differentiated twice (a total of three
rows) because we obtained 0 for the second derivative.

5. Now we integrate the function in the second column, placing the integral on
the next row, and repeat this the same number of times we differentiated.
Here we integrated twice so that all three rows are complete.

6. The integrating by parts formula requires that we compute uv minus
J vdu. To account for the minus sign, to the left of each row we alternately
write + or —. The positive in the third row is really two negative signs.
Each additional application of integration by parts adds another negative
sign, which is why the signs alternate.

Now that we have our table, we can rapidly combine the information to obtain
the integral. When we put u and dv in the table, we obtain the table to the
right. Notice that uv — [ vdu is the same as multiplying u by the entry in the
right column that is one row lower (giving uv) and then adding the integral
of the product of the terms on the bottom row. The tabular method uses this
exact same pattern. For each entry in the first column except the last, multiply
it by the entry right 1 and down 1. Sum these products and the add the integral
of the product of the entries on the bottom row. When the bottom left entry is
zero, this integral is zero and can be ignored.

For the example above, we multiply each entry in the first column (except
the last) by the entry which is over and down one. This gives us the sum

(+2)(—cos(2x)/2) + (—1)(—sin(2z)).

The integral of the product of the bottom row entries is zero, so we can ignore
it at this stage. , In our case, the product of the bottom row is zero, so our
solution is simply

/msin(?x) = (4z)(—cos(2z)/2) + (—1)(—sin(2x)/4) + /(+0)(— sin(2x)/4)dx

_ _zcos;QI) n sinfx) e

Example 1.4. Let’s compute /ln xdx. Since we don’t know how to integrate

Inz, but its derivative is 1/z which is simpler, we’ll place Inz on the left side.
Since there is nothing left in the integrand and Inx =Inx - 1, we place a 1 on
the right side. The derivative of Inz is 1/x. Further differentiation will not
simplify the problem, so we stop. We only have one integration to do, where
the integral of 1 is x. We alternately place + and — signs in the first column,

D 1
sin(2x)
D 1
D I
sin(2x)
— cos(2z)/2
—sin(2z)/4
D I
+ x sin(2x)
- 1 —cos(2z)/2
+ 0 —sin(2z)/4
D ‘ 1
+  u dv
- du v
D 1
+ Inx 1

1/x
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giving us the table to the right. The diagonal product is  Inx, and the product
of the bottom row entries is —+x = —1. The solution is

/lnxdx:xlnchr/fld:c:mlnxfquC’.

With practice, this method is extremely fast, and can be used in both
practical and theoretical settings. Many textbooks suggest to use this method

only when repeatedly differentiating the first column will eventually give a zero.

If you remember to always add the integral of the product of the bottom terms,
then you can use this method in any setting to simplify your work. This extends
what you find in most undergraduate textbooks. There are several theorems
you may encounter in future courses which are extremely simple to prove if you
just apply tabular integration by parts (see [?]).

1.2.4 Differentials and tangent lines

Recall that the derivative of a function at a point gives us the slope of the
tangent line to the function at that point. We can use this tangent line to
make estimates how much the output (y-values) will change if we change the
inputs (z-values). This is extremely useful when we don’t know the function
but instead we understand how the function changes. As one example, if we
know how quickly something is moving, then we can approximate the position
function because we understand the velocity.

For the function y = f(x), recall that we define the differential to be
df = f'(x)dxz. We can use this to approximate changes in f based on changes in

x. We can quickly obtain this formula by writing the derivative in two ways,
dy _

namely == ) and then multiplying both sides by dx to obtain dy = f'(z)dx.
ly 22 b d th ltiplying both sides by d btain d f'(z)d

Example 1.5. We know that a circle of radius » has area A = mr2. The
dA

derivative with respect to r is % = 27r, so the differential is dA = 2mrdr.
We can approximate a change in the area based upon a change in the radius.
Increasing the radius of a circle from 1 cm to 1.2 cm (so r = 1,dr = .2) will
result in an approximate increase of dA = 27(1)(.2) square centimeters. If the
radius is currently 7 = 3 cm, then a change in dr cm of radius will cause a
change in area of dA = 27(3)dr square centimeters. When dr is small, this

estimate is extremely close.

We can also view tangent lines in terms of differentials. We can use the
following idea to rapidly expand first semester calculus to higher dimensions.

Example 1.6. Consider the parabola f(z) = z2. To find an equation of the
tangent line to y = 22 at = 3, recall that we need a slope and a point to
get the equation. We can get the point by computing f(3) = 32 = 9, so the
point (3,9) is on the tangent line. The derivative is f'(x) = 2z, which means
the slope of the tangent line at = 3 is f/(3) = 6. Using the point-slope form
for a line, we obtain an equation for the line as (y — 9) = 6(x — 3). Where are
the differentials? If (x,y) is some point on the tangent line, then we can write
a change in y as dy = y — 9 and a change in = as dr = x — 3. The differential
formula dy = f’dx then becomes

(y—9)=_6_(z-3).
dy 17(3) dzx

The derivative is f’(z). The
differential is dy = f/(z)dz. A
differential is a derivative times a
change in inputs.

The slope of the tangent line is
rise _dy y—9

= f'(3) = 6.

z—3

run  dx
An equation for the tangent line is
hence dy = f/(3)dz or just
y—9=06(z—3).
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If f(z) is any differentiable function, then an equation of the tangent line at
T = c is simply
y—fle)=f'(c)(z—0).
—_—— ——

dy dzx

1.3 Taylor Polynomials

It’s time to apply our knowledge about differentials to obtain one of the most
important developments of the 18th century, Taylor polynomials. You have
already seen in previous course functions such as e”,sinx, cos x, arctan x, In z,
and more. If I were to ask you to compute sin(.2) or to give me e, you would
probably just reach for your calculator, type it in, and give me the answer. But
wait, how did your calculator give you that answer? The idea behind how the
calculator gives this answer is one of the key ideas leading up to most of modern
mathematics. Your calculator uses differentials, and an extension of this idea,
to approximate the value you want. It does not give you an exact value, rather
it gives you an approximation (accurate to 15 decimal places). So how does it
do this?

First, recall that if f(z) is any differentiable function, then an equation of
the tangent line at = ¢ is simply y — f(¢) = f/(¢)(z — ¢). Solving for y we
have y = f(c) + f'(¢)(x — ¢). This tangent line is fairly close to the function
at xz-values near c. However, rather than use a line to approximate a function,
what if instead we use a parabola. A parabola could bend more than a line,
and hopefully the parabola could give a better approximation to the function.
If a parabola gives a better approximation, then why stop with a parabola. We
could use a cubic, a quartic, or even a polynomial of any degree we choose.
As we increase the degree, we would hope that the polynomial more closely
approximates the function. We call these Taylor polynomials.

Example 1.7. Let’s use a parabola, say P () = ag+aj2+azx?, to approximate
f(x) near x = 0. We don’t yet know the value of the coefficients ag, a1, and
as, so we need some equations to solve for these constants. Let’s make our
parabola and function pass through the same point (0, f(0)), have the same
slope at x = 0, and have the same concavity, or value of the second derivative,
at x = 0. There three constraints give us three equations, namely

Py (0) = £(0),  P3(0)=f(0), and  Py(0)=f"(0).

We now solve this system of equations. Since P»(0) = f(0), we have ag+0+40 =
f(0), which tells us that ap = f(0) the value of the function at = 0. The
derivative of Pa(x) is Py(x) = a1 + 2asz, which at z = 0 needs to equal f(0).
This gives us the equation a; +0 = f’(0), which tells us the value of a;. The
second derivative is Py (x) = 2ag, and so we have 2as = f”(0). From these three
equations we find that the coefficients of the parabola are

f"(0)
-

ao = f(0), al:f’(o), and a2 =

We now have an equation for the second degree Taylor polynomial, namely

71(0)

Po(w) = $(0) + 1 (0)z + 1

We can repeat the process above for a cubic. We now require that the
function and polynomial and their first three derivatives all have the same value
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at x = 0. This gives four equation to find the four coefficients of the polynomial.
Solving this equations gives us the polynomial

Pa) = 10) + 7O+ T2 ¢ L0

"’
w. Notice that the

first three coefficients of the degree 3 polynomial match the degree 2 polynomial.
To find the degree 4 polynomial, the first 4 coefficients are the same as above,

f//l/( )

-2
In general, we can find the coefficient an, by computing n derivatives, evalu-
ating at x = 0, and then dividing by the product of all the integers up to an

f(n)( ) where f()(0)

is the nth derivative evaluated at & = 0, and n! = n(n — 1) -3-2-1, which

we call the factorial function. The Taylor polynomial of degree m centered at The factorial of zero is 0! = 1.
x = 0 is simply Feel free to ask me in class why.

where ag, a1, and ay are the same as before with a3 =

and we would obtain a4 =

including n. We write this in shorthand notation as a,, =

" G0 (m) ™ e(n)
Pa@) = 1O+ @+ L2 SDO o SO 52 S0

n=0

We say the polynomial is centered at x = 0, because we could have instead
required that the function and its derivatives matched the polynomial at another
point x = ¢. A similar Calculation shows that the Taylor polynomial of degree

m centered at x = ¢ is Pp,( Z f —c)™.

Example 1.8. The function f(z) = L has as its first three derivatives

1 2 ®) 3.2

f/(x)_(l_m)gaf//< ) (1_x)3af (x):m

Continuing to differentiate, we see that the nth derivative is f(™ (z) = #

We evaluate each of these functions at « = 0, giving

£0) = fO®0) =1,£0) =1, f20) =2, fO0) = 3!,..., fM () =nl,....

To obtain the coefficient a,,, we divide by n! to obtain a,, = 1 for all n. Hence

we see that the Taylor polynomials for f(z) = ﬁ are

Pi(z)=1+az,Pp=14a+a*Ps=1+z+2>+2°,... P, = me,

We can organize the calculations above into the table below.

n F(z) F(0) | an = f(0)/n! | apa”
(1—x)71 1 1/0! 1

1 (=1)(1 — 2)~2(=1) 1 1/1! z

2 (—1)(=2)(1 —z)73(-1)2 2 2/21=1 z?

3| (=) (=2)(=3)(1 —a)3(-1)2 | 3! 31/31 =1 3
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Once we have created this table, we can obtain a Taylor polynomial of any
degree by summing the terms in the right most column. The third degree Taylor
polynomial is P3(x) = 1 + z + 22 + 23.

Example 1.9. Let’s use the table format to find the 6th degree Taylor polyno-
mial for f(z) = cosx, centered at = = 0.

n | fO) | fF0) | an = fM0)/nl | ana”
cos ¥ 1 1/0l=1 1

1| —sinz 0 0/1'=0 0

2 | —cosx -1 -1/2! —5a?

3| sinz 0 0/3!'=0 0

4 | cosz 1 1/4! Szt

5| —sinzx 0 1/5!=0 0

6 | —cosz -1 —1/6! — gt

Summing the right column give the 6th degree Taylor polynomial centered at
z =0 as 1 1 1
T S S O
Ps(r) =1 58 Tt T Ht
Notice that é is extremely small, so the 6th order term doesn’t change the value
of Pg(x) much for small values of x.

Example 1.10. If we want to center the Taylor polynomial at a point other
than zero, then the table format below illustrates this for the 3rd degree Taylor
polynomial centered at = 7 for f(x) =sinz .

no| f(@) | f™() | an =m0l | an(z - )"
sin 0 0/11 =0 0

1| cosx -1 —-1/1! —L(z—m)!

2 | —sinz 0 0/2!=0 0

3| —coszx 1 1/3! 3z —m)?

Summing the last column gives the 3rd degree Taylor polynomial centered at
T =T as

1 1
P3(x) = —ﬁ(x -7+ 5(3? —7)’.
The graphs of several Taylor polynomials centered at © = 0 for the functions
e®, — cosz, and sin x are shown below. The higher the order of the polynomial,

s T—g0
the closer it is to the actual function.

As we increase the degree of a Taylor polynomial, we should expect to see
that our accuracy of approximating a function increases. In Table 1.1 we see
some examples of a function and several of its Taylor polynomials. Notice
that the polynomials more closely follow the function as the degree increases.
Increasing the degree of the polynomial will provide a better approximation
for functions such as cosz, sinz, e*, polynomials, and combination of these
functions obtained through addition, subtraction, and multiplication. We can
also divide any two of these function and still obtain good approximations, but
vertical asymptotes pose a problem.
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7P1(33)

7P2(l‘)

7P3(J})

7P2 x J—— T

7P4EI; / 71€EE$§

— Ps(x) — Py(z)
\ 7/ ; , , \ w—

AL N

Table 1.1: Four functions are shown together with several Taylor polynomials
centered at x = 0. Notice that as the degree of the polynomial increase, the
polynomial more closely approximates the function.

The function ﬁ has a vertical asymptote at + = 1. When we create

Taylor polynomials centered at x = 0, those polynomials follow the function up
the left hand side of the vertical asymptote, causing the polynomials to tend
toward infinity at x = 1 as we increase the degree of the polynomial. However,
none of these polynomials will do a good job of approximating the function
to the right of x = 1. In addition, none of the polynomials do a good job of
approximating the function to the left of x = —1. When approximations break
down on one side, they break down on the other side as well. We can only obtain
useful approximations of 1/(1 — ) for values of = in the interval (—1,1). The
center of this interval is = 0, where we centered our Taylor polynomial. The
distance from the center = 0 to the asymptote at © = 1 we called the radius
of convergence, and the interval of convergence (—1,1) is obtained by moving 1
unit (the radius) to the right and left of 0 (the center). We will use these ideas
and explore them more in depth when we study differential equations.

1.3.1 A Geometric View of Approximation

The differential notation dy = f’'dx reminds us that we can approximate the
change dy in a function by using the derivative. Taylor polynomials help us create
higher order approximations to functions. Here is how that idea is developed.
The first order Taylor polynomial centered at = a is P (z) = f(a)+ f'(a)(z—a).
This means that we can approximate f using f(x) = f(a) + f'(a)(z — a) or by
subtracting f(a) from both sides we obtain an approximation to the change in
the y values as

Ay = f(z) = f(a) = f'(a)(x — a) = f(a)dz = dy



CHAPTER 1. REVIEW 10

For a change in z from a to a + dx, this means Ay ~ f’(a)dx or Ay ~ dy. This
first order approximation can be improved by using higher order approximations.
The second degree Taylor polynomial gives us

1
Ay =~ f'(a)dz + Ef'(a)dx?
Similarly, a third degree approximation yields
/ 1 " 2 1 n 3
Ay ~ f'(a)dz + ﬁf (a)dz” + if (a)dz.

Taylor’s remainder theorem (which I'll let you look up if you are interested) can
then help us determine how far apart our estimated change in y is from the
actual change in y.

Example 1.11. Let’s look at approximating a change in area. Suppose we
manufacture a 1 inch diameter washer blanks (no hole in the center). Each washer
should be 1 inch in diameter, but because of imperfections in the manufacturing
process, some washers are slightly larger and some are slightly smaller. By about
how much would the area of the face of the washer increase if the diameter
were to increase by 0.02 inches? Let’s use a first, second, and third order
approximation to analyze this question.

The area function is A = 772 (ignore the small hole in the middle), and
has derivatives A’ = 27r and A” = 27 where r = .5 inches is the radius of
the washer. To match the notation above, our function f(z) is A(r), we are
centering our polynomials at 7 = .5 inches, and the change in radius is half the
change in diameter, so dr = 0.01 inches.

Q

e The first order approximation gives Ay ~ dy = f/(.5)dr = 27(.5)(.01)
.0314159.

e The second order approximation gives Ay = f/(.5)dr + 3f"(.5)dr* =

2m(.5)(.01) + 327(.01) ~ .0317301.

e The third order approximation gives Ay = f'(.5)dr+3 f”(.5)dr?*+3; f"(.5)dr?

27(.5)(.01) + 32m(.01)? + £0.01® ~ .0317301.

e The actual difference is the difference in the two areas, namely 7(.51)% —
7(.5)? ~ .0317301.

The second and third order approximations are identical to the actual change
in area because area is a 2nd order problem. This means that for each washer
we make, we may have to account for an additional .0317 square centimeters
of material. This is not a very large amount, but when you make one million
washers, that could mean an additional 30 thousand square feet of metal.

Example 1.12. Let’s examine what happens if we create a cube with side
lengths = = 2 inches. Suppose the error tolerance in creating the length of a side
of the cube is 0.1 inches. By about how much will the volume increase each side
length increases by 0.1 inches? Again let’s examine this using a first, second,
and third order approximation. Since volume is a third order problem, the third
order approximation should be exact. Our function is f(z) = x®, we will center
our Taylor polynomials at x = 2, and we have a change in = of dx = 0.1. The
derivatives of f are f’ = 3z2, f" = 6z, and f" = 6.

e The first order approximation gives Ay ~ dy = f/(2)dz = 3(2)?(0.1) = 1.2.
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e The second order approximation gives
Ay~ f'(2)dx + %f”(Q)de =3(2)%(0.1) + %6(2)(0.1)2 =1.26
e The third order approximation gives

Ay~ f’(2)dx+%f”(Q)da:Q—&—%f”’(Z)dx?’ = 3(2)2(0.1)—1—%6(2)(0.1)2—&—%6(0.1)3 =1.261.

e The actual difference is the difference in the two volumes, namely (2.1)3 —
(2)3 = 1.261.

The image to the right shows how each level of approximation gets closer to the
actual difference. We start with a cube with edges of length 2. We attach three
2 by 2 by 0.1 inch boxes to three faces of the cube (shown in red). The volume
of these 3 red boxes is precisely Ay from our first order approximation. The
extra term in the second order approximation comes from attaching three 0.1
by 0.1 by 2 inch boxes to fill in the edges of the new 2.1 inch box (shown in
green). The third order approximation comes by adding a single 0.1 by 0.1 by
0.1 inch box to fill in the final corner of the box.

Example 1.13. As a final example, suppose we are trying to construct a 3,4,5
triangle. We’ve been able to construct the side edge of 3 cm exactly, but the
side with 4 ¢cm has an error tolerance of 0.1 cm. We know the hypotenuse of the
triangle has length h = v/a? + b2 where we have a = 3, b = 4, and h = 5 with
da = 0 and db = 0.1. The first order approximation to the error is

dh = %(aQ +b2)71/2(2bdb) = %(32 +4%)712(2(4)(0.1)).

Similarly we could compute a second and third order approximation. However,
will our estimates for Ah using Taylor polynomials ever be exact? The answer
here is no. The derivative of h will never become zero, and so every time we
increase the degree of our approximation, we will get better approximation.
However, our first order approximation is already pretty close. I'll let you work
through this example as homework.

1.4 Matrices

We will soon discover that matrices represent derivatives in high dimensions.
When you use matrices to represent derivatives, the chain rule is precisely
matrix multiplication. For now, we need to become comfortable with matrix
multiplication.
We perform matrix multiplication "row by column”. Wikipedia has an excel-
lent visual illustration of how to do this. See http://en.wikipedia.org/wiki/Matrix_multiplication
and/or http://www.texample.net/tikz/examples/matrix-multiplication/ for an
explanation and visualization.

1.4.1 Determinants

Determinants measure area, volume, length, and higher dimensional versions
of these ideas. Determinants will appear as we study cross products, surface
integrals, and the high dimensional version of integration by substitution.

We associated with every square matrix a number, called the determinant,
which relates relates to length, area, and/or volume. We can use the determinant
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to generalize volume to higher dimensions. We can compute the determinant of
a 2 by 2 and 3 by 3 matrix using the formulas

det {Z 2} :Z lead—bc and

@ boc e f d f d e
d e f|=adet .‘—bdet .‘—i—cdet

g h i h i g i g h

=a(ei —hf) —b(di — gf) + c(dh — ge).

We use vertical bars next to a matrix to state we want the determinant. Notice
the negative sign on the middle term of the 3 by 3 determinant. Also, notice
that we had to compute three determinants of 2 by 2 matrices in order to find
the determinant of a 3 by 3.

Example 1.14. Here’s an example for a 3 by 3 matrix.

1 2 0
det |-1 3 4 1det{3 4}2det{_1 4}+Odet{_1 3]
-3 1 2 1 2 -3
2 -3 1
=1(3+12) —2(—1—8) +0(3 —6).

Determinants were discovered more than 2000 years ago, ' though the name
determinant did not show up until the 1800s. The same expression kept showing
up in different places, and eventually that expression was given a name. One
application of determinants is connected to finding the area of a triangle, or
parallelogram, and the volume of a tetrahedron, or a three dimensional version
of a parallelogram (called a parallelepiped). Let’s look at this example.

Think of each column of a 2 by 2 matrix as a point in the plane. These two
points, together with the origin, give the vertices of a triangle or three of the

four vertices of a parallelogram (see the image to the right). The determinant
gives the area of that parallelogram, up to a sign (sometimes the determinant is
negative). The determinant not only keeps track of area, but it lets you know
something about the angle between the two edges of the parallelogram which
contain the origin. Take the edge between (0,0) and the first column and rotate
it (keeping the origin fixed) till it lies over the second edge. This rotation can
be done in no more than 180 degrees. If the rotation was counterclockwise, then
the determinant is positive. If the rotation was clockwise, then the determinant
is negative. This is often called the right hand rule. You can achieve the same
thing by placing the index finger of your right hand on the edge given by the first
column, and the middle finger of your right hand on the the second edge, both
fingers pointing away from (0,0). One of two things will happen. Either your
thumb will point up out of the page (in which case the determinant is positive
and a counterclockwise turn gets you from the first edge to the second) or your
thumb will point into the page (in which case the determinant is negative). It
follows that if you interchange two columns of a matrix, then the determinant
will change sign but not magnitude. This idea generalizes to higher dimensions,
in particular the determinant gives volume in 3D (up to a sign). Mathematicians
have used the determinant to measure size in higher dimensions.

Example 1.15. Consider the 2 by 2 matrix B ;] whose determinant is

3:2—0-1 = 6. Draw the column vectors [g

and B] with their base at

1See http://www-history.mcs.st-and.ac.uk/history /Hist Topics/Matrices_and_determinants.html
for an interesting history.
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the origin. These two vectors give the edges of a parallelogram whose area is
the determinant 6. If I swap the order of the two vectors in the matrix, then

the determinant of B g} is —6. The reason for the difference is that the

determinant not only keeps track of area, but also order. Starting at the first
vector, if you can turn counterclockwise through an angle smaller than 180°
to obtain the second vector, then the determinant is positive. If you have to
turn clockwise instead, then the determinant is negative. This is often termed
“the right-hand rule,” as rotating the fingers of your right hand from the first
vector to the second vector will cause your thumb to point up precisely when
the determinant is positive.

1 3
2 0

3 1
0 2

’:6and‘ ‘:—6

Figure 1.1: The determinant gives both area and direction. A counter clockwise
rotation from column 1 to column 2 gives a positive determinant.

For a 3 by 3 matrix, the columns give the edges of a three dimensional
parallelepiped and the determinant produces the volume of this object. The sign
of the determinant is related to orientation. If you can use your right hand and
place your index finger on the first edge, middle finger on the second edge, and
thumb on the third edge, then the determinant is positive. For example, consider

1 00
the matrix A= [0 2 0]. Starting from the origin, each column represents
0 0 3

an edge of the rectangular box 0 <z < 1,0 <y < 2,0 < z < 3 with volume
(and determinant) V = lwh = (1)(2)(3) = 6. The sign of the determinant is
positive because if you place your index finger pointing in the direction (1,0,0)
and your middle finger in the direction (0,2,0), then your thumb points upwards
in the direction (0,0,3). If you interchange two of the columns, for example

0 10
B =12 0 0], then the volume doesn’t change since the shape is still the
0 0 3

same. However, the sign of the determinant is negative because if you point
your index finger in the direction (0,2,0) and your middle finger in the direction
(1,0,0), then your thumb points down in the direction (0,0,-3). If you repeat this
with your left hand instead of right hand, then your thumb points up.

1.5 Solving Systems of equations

We’ll need to solve systems of 2 or more equations. In particular, please practice
solving linear systems. It wouldn’t hurt to learn Gaussian elimination, but it
won’t be needed for this course. What we will need is solving linear and quadratic
systems of equations. The most common techniques involve substitution and
the addition (elimination) method.

Many problems involve finding an intersection of two objects. If each object
is given by an equation, then finding the point of intersection is the same as

L
L/
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solving a system of equations. When we study Lagrange multipliers, we will
need to be able to solve complex systems of nonlinear equations.

Sometimes the solution to a system of equations is not unique. For example
the system x4y = 2, 2x+ 2y = 4 has infinitely many solutions, as both equations
represent the same line. We can give a solution to such systems by introducing a
new variable, our parameter. For example, we could say that y = ¢ (the variable
t is a parameter we are free to choose) and then solve for = to obtain = 2 — .
This would give a solution (x,y) = (2—t,t) for any ¢t. If there are more variables
than equations, then you will often get solutions of this type.
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1.6 Review Problems for 215

1. (Derivatives) Differentiate the following func-
tions. If they are difficult, please head to your
book first.

(a
(b
(c
(d

(e)
(t
(g
(h
(i
8)

)
)
)
)

)
)
)
)

cos(3x)

xsinx

arctan
Inx

tan(sec(z? + 1))
fla) = e?® cos(z? + 1)

~ In(tan~'z)
arcsin z using implicit differentiation
arctan x using implicit differentiation
Sec. 3.2 (product and quotient rule)
Sec. 3.5 (chain rule ** practice here)

Sec. 3.8 (Inverse trig functions)

2. (Integrals) Then find the following

(a)
(b)
(c)

(2)

(h)
(i)

[ e**dx (u-sub) (d) [Inzdz (parts)

[ 51 de (u-sub) (e) [z%e3da
Jxsinzdx (parts)(f) [ e® coszdx

Find the area under the function e3* for
0 <z <3. (u-sub)

Sec. 5.5 and 8.1 (u-substitution)

Sec. 8.2 (integration by parts)

3. (Differentials and tangent lines)

(a)
(b)

Find the differential df of the function
f(z) = 2% + 4arctan z.

The volume of a sphere of radius r is
V = (4/3)7r3. A tennis ball has a ra-
dius of about 3 cm from the center of the
ball to the beginning of the rubber exterior.
The rubber exterior is about .2 ¢m thick.
Use differentials to estimate the volume of
the rubber exterior. Compare this to the
actual difference between the volume of a
sphere of radius 3 and 3.2 cm.

A manufacturer creates a cylindrical can of
height 10 cm and radius 4 cm. The manu-
facturing process results in cans with radii
between 3.9 and 4.1 cm, but the height
stays at just about 10 cm always. About
how much change in volume should you
expect if the can’s radius is .1 cm different
than 4 cm? Use differentials to make your
estimate.

(d)
()
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Find an equation of the tangent line to
y=21a>at x=2.

More differential problems are in Sec-
tion 3.10:19-50 (11th edition) and Section
3.11:19-50 (12th edition).

4. (Taylor Polynomials)

(a)

(b)
()

(f)

Find the degree 1, 2, 3, 4, and 5 Taylor
polynomials to f(x) = In(z + 1) centered
at ¢ = 0.

More problems are in section 11.8:1-14
(11th edition) and 10.8:1-22 (12th edition).

In constructing a square of side lengths 3
inches, use a first, second, and third order
approximation to estimate the change in
area of the square if the side lengths in-
crease from 3 to 3.2 inches. Compare this
to the actual change in area.

In constructing a circle of radius 4 inches,
use a first, second, and third order approx-
imation to estimate the change in area of
the circle if the radius increases from 4
to 4.1 inches. Compare this to the actual
change in area.

In constructing a right triangle with sides
lengths 3 and 4 inches, use a first, second,
and third order approximation to estimate
the change in the length of the hypotenuse
if one side increases from 3 to 3.1 inches.
Compare this to the actual change in the
length.

In constructing a ball of radius 2 inches,
use a first, second, and third order approx-
imation to estimate the change in volume
(V = 37r%) of the ball if the radius in-
creases from 2 to 2.3 inches. Compare this
to the actual change in volume.

5. (Matrices) Compute the following.

b W

3 211 4 —2 5 1 -1
[9 0“5 2 GJe)det2 703
4 0 2

3 3 2 7

6 1 7][9]| (f)det|2 0 1
-2 4 1 5
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12 1 -1 0 2 Here are some solutions.
a3 o207
Find AB, BA and det(A) ~11 923 24 45
0 3 -1 . 5. (a) [15 37} (d) [19 18}
(h)LeteC=|2 1 1|,D=|y|. Find 13 16 6
CD and det(C).
©) (¢) [13] () —1

6. (Systems) Solve the following systems of equa-
tions. If there are multiple solutions, give your 6. (2) o =7/3,y=2/3

answer in terms of a parameter t.
(b) infinitely many solutions x = t,y = 2t —

x+y =3 6xr+2y =2 4,z="7-3t
(@) 3, 4 (d by —
r—Yy = 3v—4y =5 (¢) inconsistent
r+y+z =3 6z + vy =4 3 4
(b) (o) L, (d) z=2y=—¢
(e) infinitely many solutions = ¢,y =4 — 6¢

—r+4y =8 ¢ 3x+4y+z =1 4 5
(c) ( r—2y+32 =3 () inﬁnitelymanyxzt,yz—?t,z=1—?1&



Chapter 2

Vectors

After completing this chapter, you should be able to do the following;:

1. Define, draw, and explain what a vector is in 2 and 3 dimensions.

2. Add, subtract, and multiply vectors (scalar product, dot product, and
cross product). Ilustrate each operation geometrically.

3. Use vector products to find angles, length, area, projections, and work.

4. Use vectors to give equations of lines and planes, and draw these objects

in 3D.

2.1 Preparation and Homework Suggestions

You can find the following problems in Thomas’s Calculus[?].

Preparation Problems (11th ed)

Preparation Problems (12th ed)

Day 1 | 12.1:50
Day 2 | 12.4:7
Day 3 | 12.3:19

12.2:23
12.4:17
12.3:45

12.2:26 12.3:4
12.5:18 12.5:23
12.5:33 12.5:59

12.1:56 12.2:23 12.2:26 12.3:4
12.4:7 12.4:17  12.5:18 12.5:23
12.3:30 12.3:43 12.5:33 12.5:59

Your homework is to do at least 7 problems for each day of class, at least of
2 of these should be done with the computer. The following homework problems
line up with the topics we will discuss in class. The basic practice problems
should be quick problems to help you master the ideas, and the good problems
will require a little more work. The theory and application problems are ones
that will challenge you more if you want to fully master the material.

(11th ed) Topic Sec | Basic Practice Good Problems Thy/App

Multiple Dimensions | 12.1 | 1-24, 35-48 25-34, 49-52, 53-56

Vectors 12.2 | 1-24 25-34, 35-40, 43-47, 54 41, 42, 48, 49, 50, 51, 53,

Dot Product 12.3 | 1-14, 17-19, 15, 20, 27, 28, 30, 33-42, 43-46, 47-52 16, 21, 22-26, 29, 31, 32, 53-56
Cross Product 12.4 | 1-18, 35-42 19-22, 23, 24, 25-26, 27-31, 43 32-34, 44

Lines and Planes 12.5 | 1-12, 21-28, 33-46, | 13-20, 29-32, 47-48, 53-62, 65.67.70-72 | 63, 64, 66, 68, 69, 73, 74

17
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(12th ed) Topic Sec | Basic Practice Good Problems Thy/App

Multiple Dimensions | 12.1 | 1-30, 41-54 31-40, 55-58, 59-66

Vectors 12.2 | 1-24 25-34, 35-40, 43-49, 54 41, 42, 50-55

Dot Product 12.3 | 1-14, 15, 23, 24, 26, 30 31-40, 41-44, 45-50 16, 17-22, 25, 27, 28,
Cross Product 12.4 | 1-18, 35-47 19-22, 23, 24, 25-26, 27-31 32-34, 48-50

Lines and Planes 12.5 | 1-12, 21-28, 33-46, | 13-20, 29-32, 47-48, 53-62, 65.67.70-72 | 63, 64, 66, 68, 69, 73, 74

2.2 Graphing and distance in three dimensions

To plot points in 3 dimensions, we have to introduce a way of graphing things
three dimensionally. The most common method of graphing is to use a right-
hand system. Your pointer finger represents the positive z-axis, your middle
finger represents the positive y-axis, and your thumb represents the positive
z-axis. On the printed page, we’ll often have the z-axis point right, the y-axis
point back, and the z-axis point up. For one way to plot a point in 3D, we start
by making a rectangular prism with one corner at the origin, and the opposing
corner at the point of interest, as shown in the two pictures below which plot
the three points (1,2,3), (—1,4, —2), and (0,—3,1).

Drawing the full rectangular prism above can be time consuming, so sometimes
we’ll just draw the parallelogram in the xy-plane with a line up or down getting
us to the point. The quickest option is to just draw half the parallelogram with
a line up or down. The two pictures below show examples of each of these
options. Note that every time we draw an edge, it is parallel to one of the axes.

B------0
I
I
I
|

2.2.1 Distance Between Two Points

To find the distance between the origin and a point (z,y, z), the Pythagorean

theorem gives the distance from (0,0,0) to (z,y,0) as y/22 + y2. The length
of the hypotenuse of the triangle with vertices (0,0,0), (z,y,0), and (z,y, 2) is
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hence \/(\/1:2 +92)2 4+ 22 = /22 +y? + 22. So the distance from the origin
to (3,5,—2) is \/(3)2 + (5)2 + (—2)2 = v/9 + 25 + 4 = v/38. We can generalize
this formula to show that the distance between two points is

V(we — 1)+ (Y2 — y1)% + (22 — 21)2

This formula gives us the distance between P; = (1,0,2) and P, = (3,1,0) to
be /(3—-1)2+(1-0)2+(0-2)2=3.

2.2.2 Equations of Spheres

Since a sphere of radius a centered at (xo, Yo, 20) is all points (z,y, z) which
are distance a from the center, we get (by squaring both sides of the distance
formula) that the equation of a sphere is

(x —20)? + (y —90)> + (2 — 20)* = a”.

We can rewrite the equation 2% 4 y? + 22 + 2z — 4y = 0, using completing the
square, in the form 22+ 2x+1+y? —4y+4+22 = 1+4 or (x+1)?+(y—2)2+2% = 5.
Once we've done this, we know that this is an equation of a sphere of radius v/5
centered at (—1,2,0).

We will focus most of our time this semester in 2 and 3 dimensions. However,
many problems in the real world require much higher dimensions. When you
hear the word dimension, it does not always represent a physical dimension. If a
quantity depends on 30 different measurements, then immediately the problem
involves 30 dimensions. Dimension is often a word used to refer to the number of
variables in a problem. As a quick illustration, the formula for distance between
2 points in space depends on 6 numbers, so distance is really a 6 dimensional
problem.

2.3 Vectors

A vector (written ¥, or in bold face v) is a magnitude in a certain direction.
We can use vectors to represent forces, velocity, acceleration, and many other
quantities. One way to think of a vector is to imagine an arrow, starting at the
tail and ending at the head where we draw an arrow on the head. We know
two vectors are equal if they both represent the same magnitude in the same
direction, regardless of where the vectors are drawn. The two vectors on the
right both represent the vector (2, —3).

The vector which points one unit in the z direction we can write in many
ways, such as i = i = (1,0,0). Similarly we define j = j= (0,1,0) to be the
vector that points one unit in the y direction, and k = k= (0,0,1) to be the
vector that points one unit in the z direction.

We'll often vectors with their tail at the origin and their head at (v1,wvs) for
2D vectors, or at (vq,ve,vs3) for 3D vectors. The component form of a vector
¥ centered at the origin with head at (v1,vs,v3) can be written (vy,vs,v3) or
v1i+v2j+v3k. Many textbooks use bold face font to represent vectors. However,
since it is rather difficult to write in bold face font on paper and chalkboards, I
will write vectors with an arrow above them in the text, as this is how vectors
are commonly expressed in writing other than texts. In addition, this book uses
the form (vq, v, v3) much more often than v1i+ vej + vsk.
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2.4 Vector Arithmetic

We add and subtract vectors component wise, so (a,b) + {¢,d) = (a +¢,b+ d). I
find that writing vectors vertically as column vectors make much of the arithmetic
simpler, as then we can write

() ()=Ga)

Multiplying a vector by a scalar requires that we multiply each component by
the scalar. As an example, we can combine addition, subtraction, and scalar
multiplication to compute

(1,3) — 2(=1,2) + (4,0) = (1 — 2(—1) + 4,3 — 2(2) + 0) = (7, —1).

If we write the vectors using column notation instead, we obtain

(5)-2(2)+ () - (5751 - ()

We can also perform vector addition geometrically. We draw the first vector
anywhere we want. Then we draw the second vector with its tail located at
the head of the first. The sum of these two vectors, which we call the resultant
vector, is the vector which starts at the tail of the first and ends at the head
of the second. We call this the parallelogram law of addition, as repeating
the process with the order of the vectors switched gives the other half of the
parallelogram, as seen in the picture on the right.

We can visualize scalar multiplication as equivalent to stretching a vector
by the scalar. If the scalar is negative then the vector turns around to point in
the opposite direction. The diagram to the right shows a vector as well as what
happens if we times the vector by 2 or by —%.

We can combine addition and scalar multiplication to obtain a geometric way
to subtract vector. Since we have @ — ¥ = @ + (—7), then we start by drawing @
and then draw —v with its tail is at the head of 4. Connecting from the tail of
i to the head of — gives the difference, as seen on the right. Notice also that if
we drew both @ and ¥ with the same tail, then their difference @ — ¥ connects
the heads, pointing from the head of ¢’ to the head of @. This gives us a simple
way to connect a vector between two points.

2.4.1 Magnitude

We can find the magnitude (or length, or norm, or absolute value) of a vector by
using the distance formula. We’ll use either ||@|| or || to denote the magnitude.
The distance formula gives the magnitude as

] = [i] = \/uf + ud + uf.
Example 2.1. The length of (1,2,4) is | (1,2,4) | = 12 + 22 4 42 = 1/21.

We call a unit vector a vector with magnitude 1. We can normalize a vector
by dividing the vector by its magnitude, which makes the new vector a unit
vector. We can write any vector as the product of its magnitude and a unit
vector in the direction of the vector.

Example 2.2. We can write (1,2, 4) as the product of its magnitude and a unit
vector by writing (recall the magnitude is v/21)

0= (6 (559) - () (g )

magnitude

unit vector
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Example 2.3. Let’s obtain a vector of length 5 which points in the same

direction as (—2,3). The magnitude of (—2,3) is \/W = /13, which

s T \F>
5 in this direction is then (5) <<\/ﬁ \/ﬁ>) = <\ﬁ \F>
2.4.2 Vector Fields

One of the most important uses of vectors is the idea of a vector field. At
every point (z,y) in the plane, or (x,y, z) in space, we place a vector ﬁ(x,y),
or ﬁ(x, y,z) . Two types of vector fields which occur in nature are radial vector
fields and spin fields, shown below. We'll study vector fields more as the semester

progresses.

‘\ /

TN

F(z,y) = (radial vector field) F(x y,x) (spin field)

means a unit vector in the same direction is vector of length

Example 2.4. Let’s obtain a formula for a vector field such that at each point
(z,y) other than the origin we obtain a vector of length 1 that points directly N\ \ T / / S
away from the origip. Not.e first of a.ll th.at the vector (z,y) Ipoints fr(?m th.e AN \ T /4 A
origin to (z,y), so is precisely the direction we need. A unit vector in this

——2=% A formula for our vector field is hence
A /x2 + y2 ——— —_—
3 z y TN
Va2 +y? o+ y? </ N Y
A graph of this vector field is shown to the right. i v/ l \ \ ~

A vector field where every vector
points away from the origin with

2.5 The Dot Product magnitude one.

We define the dot product of two vectors @ = (uq,usg, u3) and ¥ = {v1,vs,v3) to
be the scalar quantity

direction is simply

—

- U = U1V1 + UgVy + uzvz = E U V.

S

We define the dot product in other dimensions similarly, by just multiplying
together corresponding components and then summing the products.

2.5.1 The dot product gives magnitudes and angles

The dot product helps find magnitude. Note that if @ = (u1,us,us), then
@ - = u? + u3 + u3 which is the square of the magnitude, or symbolically we
have

a-u = |ul*.
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In dimensions higher than three, we can use this relationship between the dot
product and magnitude to define distance.

Using the law of cosines and vector subtraction, we can show that if 6 is the
u-v
= (
. o ot ¢
can then quickly compute the angle between both # and ¥. We can rearrange
the formula to compute the dot product using

angle between # and ¥, then cosf = I'll leave this as an exercise). We

—

- U= |U]|V] cosb.

This shows that the dot product is zero if and only if the angle between & and v
is 90 degrees (7/2) radians or one of the vectors is the zero vector.

Definition 2.5: Orthogonal. We say that two vectors are orthogonal if their
dot product is zero.

Note also that since @ - ¥ = |i||7] cos 0, then if 6 < 7/2, we know the dot
product is positive and if § > 7/2 then the dot product is negative.

Example 2.6. The vectors (1,3, —2) and (4,0, 2) are orthogonal because their
dot product 1(4) +3(0) —2(2) = 0 is zero. The vectors (1,3, —2) and (4,1, 2) are
not orthogonal because their dot product 1(4) + 3(1) — 2(2) = 3 is not zero. In
particular, since | (1,3,—2) | = v/14 and | (4,1,2) | = v/21, the angle 0 between
these two vectors satisfies

0-v 3

lallv] V1421

We can then find the angle between these two vectors using the inverse cosine

: — el 3
function, namely 6 = cos (m\/ﬁ>

cosb =

2.5.2 Projections

The projection of @ onto the vector v, written projzu, is a vector parallel to
¥ whose magnitude is the component of @ in the direction of . We start by
drawing both vectors with their base at the origin. We then create a right
triangle with « as the hypotenuse and the adjacent edge on the line containing
¥. We then have projzu as the vector which starts at the origin and ends at the
right angle, as shown below.

If the angle between the two vectors is less than 90 degrees, then the
magnitude of the projection is

1

i)

<
S

mmw=m|'=
When the angle between the two vectors is greater than 90 degrees, the magnitude
is opposite the quantity above. We call the quantity above the scalar component

ol

=

=
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of U in the direction of v. This scalar component keeps track of both magnitude
and whether the projection points in the same direction as ¥ or opposite ¥. Since
. . o L. U _ .
a unit vector in the direction of ¥ is ﬁ, multiplying this vector by the scalar
U

component of # in the direction of ¥’ gives us the projection formula
w-v\ v
r0j U = —.
Pl =\t )

I . N EECA
= U - ¥, we can rewrite the formula above as proj;u = .

Since |7]?

Example 2.7. The projection of (—2,1) onto (3,1) is
: <727 ]-> ) <Bv 1> -5 -3 —1
projes gy (—2,1) = (<31><31> (3,1) = 0 (3,1) = -5 )

Reversing the order, the projection of (3,1) onto (—2,1) is

pr0j<_271> <3, 1> = <m> < 2, 1> 55 < 2 1> <2, —1> .

2.5.3 Work

When a force F and a displacement d are in the same direction, we define
the work done by F acting through a displacement d to be W = |F||d| (force
times displacement). However if the force and displacement are in different
directions, then we ﬁnd the component of the force parallel to the displacement
(the component of F' in the direction of d) and we use that quantity to compute
the work. This gives us the more general work formula as W = \F | cos 6]d],

Fd

where 6 is the angle between F and d. Since we know cosf = Flld

we can

simply the formula for work to just

—

1 ﬁjl
2y

W = |F|cosf|d| = |F| =F-d

=

|F|
Work is precisely the dot product of the force and the displace.

Example 2.8. Suppose a box moves down a ramp from the point (0,3)m to the
point (6,0)m. Along this path, a constant force from gravity of F= (0, —200)
Newtons acts on the box. There are other forces at play in this problem, but
we want to focus on just the work done by gravity. What is the work done by
the force F' as the box moves down the ramp from (0,3) to (0,6)?

We need a vector for the displacement. Recall that vector subtraction @ — ¢

gets us a vector with tail at ¢ and head at @. We need a vector from (0, 3) to
(6,0), so the desired vector is

d = (6,0) — (0,3) = (6,—3).

Alternately, we could have just drawn a picture and realized that the box moved
right 6 and down 3. Either way, the work (in Newton meters) done by F' acting

through the displacement d is then

W = (0, —200) - (6, —3) = 600.

Pr0j<_2,1) (3,1)
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2.5.4 Parallel and orthogonal components

Notice that in finding Work we used the portion of F parallel to d to compute
work. The portion of F orthogonal to d contributes nothing to the work done.
We’ll occasionally need to decompose a vector F as the sum of a vector parallel
to d (written F’”J) and a vector orthogonal to d (written ﬁig). Since we know

the vector parallel to d is the projection of F onto d, we have the formula
F:F|\J+FLJ: pI‘Ojd-'F—I—FJ_d-‘
Solving for F | 7 gives the component of F orthogonal to d as
P_l(;: F"—proj(;ﬁ).

Example 2.9. Let’s return to the previous example where F= (0, —200) and
d = (6,—3). We can compute the component of F parallel to d as

[(6,=3)]  1(6,=3)]
We can then decompose the force as the sum

F = (0,—200) = (80, —40)+((0, —200) — (80, —40)) = (80, —40)+ (—80, —160) .

Fj 7= projs s (0, —200) = = (80, —40) .

Remember that the only portion of the force that contributes to the work is the
parallel component. We could have computed the work by first computing the
projection, and then using the formula

W = | Fglld] = | (80, —40) || (6, —3) | = /6400 + 1600/36 + 9 = 600.

We obtained the exact same answer, but it took a whole lot more effort.

2.6 The Cross Product

The cross product of @ = (uy,us,us) and ¥ = (v1,v9,v3) is a new vector
7k
U X U= (ugvg — ugva, —(u1v3 — uzvy), usv2 — ugv1) = det |u; wy us
v V2 Us

Note that & x ¥ = —¥ x u. Because of this, we say that the cross product is
anti-commutative. Be careful not to switch the order on the cross product.

2.6.1 The cross product is orthogonal to both vectors

The cross product of two vectors always is orthogonal to both « and v. We
could verify this by performing the dot products 4 - (@ x ¥) and ¥ - (@ x ¥) and
showing that in each case we get zero.

2.6.2 The magnitude of the cross product gives area
We could also show that the magnitude of the cross product is
@ x 7| = |i||7] sin 6.

This formula is very similar to the dot product formula, but involves sin 8 instead
of cosf. The area of the parallelogram formed using the two vectors @ and
has the same area, as the base length is || and the height is |¥/] sin 6, as shown
in the picture on the right. The key to remember is that we can use the cross
product to find the area of a parallelogram.
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2.6.3 Direction comes from the right hand rule

Two vectors ¢ and ¥ generally determine a plane in space. Since the cross
product is orthogonal to both # and ¥, it must point away from this plane in
one of two directions. We can visually obtain the direction of the cross product
using the right hand rule. Place the base of your right hand on the first vector
with the inside of your hand facing the second vector. As you curl your right
hand from the first vector to the second vector, your thumb will point in the
direction of the cross product. Alternately, you can place your right index finger
pointing in the direction of the first vector and your middle finger pointing in
the direction of ¥. The direction of @ x ¥ is in the direction of your thumb.

2.6.4 Torque, or moment of force

There are many other applications of the cross product. Most engineers will
compute torque (or moment, or moment of force) using the formula 7 =7 x F
to find the tendency of the force to rotate an object about an axis.

Example 2.10. A vector which is orthogonal to both (1,—2,3) and (2,0, —1)
is the cross product

i j K
(1,-2,3) x (2,0,—1) =det |1 —2 3
2 0 -1
= ((=2)(=1) = (0)(3), =[(1)(=1) = (2)(3)], (1)(0) = (2)(—2))
=(2,7,4).

Notice that if we reverse the order, then we obtain (2,0,—1) x (1,—2,3) =
—(2,7,4) which is also orthogonal to both (1,—2,3) and (2,0, —1) but points
in the opposite direction.

In addition, the area of the parallelogram formed by the vectors (1, —2,3)
and (2,0, —1) is | (2,7,4) | = V4 + 49 + 16 = v/69. If we wanted the area of the
triangle with vertices (0,0,0), (1,—2,3), and (2,0, —1), then we would just half
this amount.

2.7 Lines and planes

2.7.1 Lines

Back in college algebra and high school, we wrote the equation of a line as
y = mx+b. The slope m tells us a direction of over 1 and up m. This is a vector,
which we can write in the component form ¥ = (1,m) (a one unit increase in
x results in an increase of m units in the y direction). The y-intercept b gives
us a starting point (0, ) which we can also write in the vector form 75 = (0, b).
This is the point from which we begin our graph. In vector form, we can write
an equation of the line y = mx + b as

(=W )« §)-en

Look back at the equation above. Do you notice that we are scaling the vector
(1, m) by some amount (z) and then adding that to the vector (0,b). We can
think of this geometrically by drawing the starting point (0,b) and placing the
scaled vector (1,m)x with its tail on the head of the starting point, as seen
below.
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'FO = <07 b>

Rather than writing (z,y) (or (z,y, z)), we’ll use the vector 7 to stand for
the radial vector which starts at (0,0) (or (0,0,0)) and points radially outwards
to the point (z,y) (or (x,y,z)). We can then write the equation above as
7 = Uz + 7o or in function notation as 7(x) = vx + 7 to emphasize that the
variable z is the parameter we are free to choose. We’ll often use the variable ¢
instead of x as our parameter, which means we would write an equation of a

line in the form
. T - N
7r(t) = = Ut + 1p.
0= () =i+

The benefit of writing an equation of a line in this vector form is that now given
any starting point 7y and direction vector ¥, a vector equation of the line is
simply 7(t) = 0t 4+ 7. The tips of the vectors 7(t) whose tails are always at the
origin will trace out the line.

Example 2.11. Let’s give an equation of the the line which passes through the
points P(1,2,3) and Q(0,—1,4). To get the direction vector, we think of each
point as a vector and then subtract, giving us

PQ=G-P=(0—-1,-1-2,4-3) = (-1,-3,1).

We can now use either point as our start point 7 to obtain two different vector
equations of the line, namely

T -1 1 —t+1
)=yl =-3|t+ 2] =|-3t+2 and
z 1 3 t+3
T -1 0 —t
mt=|y|l=-3|t+[-1]=[-3t-1

z 1 4 t+4

To find a vector equation of the line parallel to the line 7(¢t) = (3¢, —5t + 2,8t — 7)
which passes through the point (2, —8, 1), we need a direction vector and a point.
The direction vector is parallel to the direction vector of the given line, so we
use ¥ = (3, —5,8). The point was given to us as (2, —8, 1), so an equation of the
line is 7(t) = (3t + 2, —5t — 8,8t + 1).

In the example above we obtained two different vector equations for the
same line. In higher dimensions, we’ll find that there are often many ways of
expressing an equation for the same object. How can we tell that two vector
equations represent the same line? The next example addresses this.

Example 2.12. Counsider the line given by 7(¢) = (1,2) ¢ + (3,4). A direction
vector for this line is ¢ = (1, 2), however any scalar multiple of this vector will
be parallel to the line as well. Notice also that if we let ¢ = 2, then the line
passes through the point (5,8). Using ¢ = (=3, —6) and 75 = (5, 8), another
vector equation for the same line is 7(t) = (—3, —6) t + (5, 8).
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How can we tell that these two vector equations represent the same line?
One way is to remove the parameter t. From the second equation we know that
x = —3t+ 5 and y = —6t + 8. Solving both of these equations for ¢ and setting

them equal gives % = % or solving for y gives y = 2(x — 5) + 8 = 2z — 2.
Repeating this with the first equation gives IT’?’ = %4 or solving for y gives

y =2(z — 3) +4 = 2z — 2, the same the second line.

2.7.2 Planes

Let’s conclude this chapter by exploring how to obtain an equation of a plane
in space. We say a vector is normal to a plane if the vector is orthogonal to
every vector which lies in the plane. A normal vector “sticks out” of a plane at
a right angle. If we have a point P = (a,b,c) on a plane, and a normal vector
71 = (A, B, C) to the plane, then we can quickly obtain the equation of the plane.
For any point @ = (z,y, 2) in the plane, the vector PQ = (x —a,y—b,z—c)
is a vector in the plane and hence must be orthogonal to 7, as shown in the
picture below.

= (A, B,C)

Since orthogonal vectors have a dot product of zero, this gives an equation of
the plane as .
ii- PQ = 0.
We can rewrite this equation in any of the equivalent forms below:
(A,B,C)-{(x —a,y—b,z—¢c)=0
Alx —a)+B(y—b)+C(z—¢)=0
Ax+ By+ Cz= D,

where D is the constant D = Aa + Bb+ Cc. The key to obtaining an equation
of a plane is to find a point on the plane and a normal vector. Any equation of
the form Az 4+ By 4+ Cz = D is an equation of a plane, where the normal vector

is 7 = (A, B,C) and we can find a point on the plane by guessing any triple
(z,y, z) that satisfies the equation.

Example 2.13. We can find a normal vector for the plane which passes through
the points P = (1,0,0), @ = (2,0,—1), and R = (0,1,3) by using the cross
product to obtain

ii=PQ x PR=(1,0,—1) x (—1,1,3) = (1,-2,1).

We can pick any of the three points to obtain an equation of the plane, so
choosing P gives us the equation

{lr—1)—2(y—0)+1(x—0)=0 or z—2y+z=1.
If we instead use the point @), then we obtain
(x—2)—2(y—0)+1(z+1)=0 oragain z—2y+z=1.

It does’nt matter which point you use, you will obtain the same equation.
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Example 2.14. To find a normal vector for the plane containing the two
intersecting lines 7 (t) = (1+1¢,3¢t,2) and 7(t) = (2+2t,3,2 —t), we just
compute the cross product of the direction vectors for each line, namely

i =17 x Uy = (1,3,0) x (2,0,—1) = (—3,1,—6).

Since the plane contains both lines, we can use any point on either line as a
point on the plane. Let’s use 7 (0) = (1,0,2) which gives an equation of the
plane as —3(z — 1)+ 1(y — 0) — 6(z — 2) = 0.

When two planes intersect, then they will generally intersect in a line. We
need to find an equation of this line. We can find a direction vector for the line

of intersection by computing the cross product of normal vectors to each plane.

If that cross product is zero, then the two planes are parallel. Otherwise, we can
use the dot product of the two normal vectors to find the angle of intersection
of the planes.

To sketch a plane, we have to plot 3 non collinear points. The easiest way to
plot a plane is to write the equation of the plane in the form

T z
T8 2o
a b ¢

When written in this form, the plane passes through the coordinate axes at the
points (a,0,0), (0,b,0), and (0,0, c). As an exercise, take a moment to sketch
the planes 2z 4+ 3y + z = 6, x — 4y = 8§, and§+%+z: 1.

Using the dot product, cross product, and projections, we can derive the
following formulas for distances between points, lines, and planes.

e The distance from a point Q to a plane (with normal vector 7 and a point
P) is given by |proj; PQ]|.
e The distance from a point @ to a line (with direction vector ¢ passing

through P) is |P_Q — prong_Q|.

e The distance from a line (with direction vector @7 passing through P;) to
a line (with direction vector ¥ passing through P») is [projz, «z, P1 P2/

You can obtain all these formulas by drawing an appropriate diagram and then
use some facts from earlier in the chapter. Make sure you can explain why each
of these formulas is correct.

We can graph the plane

g + % + % = 1 by connecting
the points (2,0,0), (0,—3,0), and
(0’ 07 5)'



Chapter 3

Curves

After completing this chapter, you should be able to do the following;:

1. Describe, graph, give equations of, and find foci for conic section such as
parabolas, ellipses, and hyperbolas.

2. Model motion in the plane using parametric equations. In particular,
describe conic sections using parametric equations.

3. Find derivatives and tangent lines for parametric equations.

4. Use integrals to find the lengths of parametric curves and the surface area
of surfaces of revolution.

3.1 Preparation and Homework Suggestions

Preparation Problems (11th ed) Preparation Problems (12th ed)
Day 1 | 10.1:17 10.1:33 10.1:55 10.1:39 | 11.6:17 11.6:33 11.6:55 11.6:59
Day 2 | 3.5:85 10.4:3 10.4:7 3.5:95 11.1.1 11.1:7 11.1:16  11.1:21
Day 3 | 3.5:101 10.4:12 6.3:3 6.5:33 11.2:1 11.1:18 11.2:26 11.2:31

The following homework problems line up with the topics we will discuss
in class. Draw from these to do your homework. Remember that if you work
through the details from examples in the book, you can count that as homework.
You will want to make sure you can do the basic practice problems to pass the
class, and be able to do the good problems to get an A.

Topic (11th ed) Sec | Basic Practice | Good Problems | Thy/App Examples
Conics 10.1 | 1-38 39-74, 83, 86, 88 | 75, 76, 81, 89-94 | E1-5
Parametric Equations | 3.5 | 81-94 95-108 E10-15
Parametric Equations | 10.4 | 1-12,19-26 13-18 E1-2

Arc length 6.3 | 1-8 19-26 El
Surface Area 6.5 | 33-38 E3-4
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Topic (12th ed) Sec | Basic Practice | Good Problems | Thy/App
Conics 11.6 | 1-38 39-68 69-80
Arc length 6.3 | 1-8 19-26
Surface Area 6.5 | 33-38
Parametric Equations | 11.1 | 1-18, 19-24, 25-33 34-40
Calc. with Par. Eqns. | 11.2 | 1-14, 25- 34 15-24, 35-36 41-48

As you do homework, start with the basic practice problems. Work your
way down the basic problems list and then go back to the good problems. The
repetition will help you learn the vocabulary.

3.2 Conic Sections

3.2.1 Parabola

When I hear parabola, I often think y = z?. However, there’s much more to
a parabola. Given a point (called the focus) and a line (called the directrix)
which does not pass through that point, a parabola is the set of all points in the
plane that are equidistant from the point and the line. The vertex is the point
on the parabola closest to the directrix. A parabola will open away from the
directrix. If the directrix is given by the equation y = —p and the focus is the
point (0, p), then using the distance formula it can be shown that 22 = 4py, and
the parabola opens symmetrically upwards along the y-axis. Interchanging x
and y shows that if the directrix is a vertical line x = —p and the focus is (p,0),
we get the equation y? = 4px.

/.

T,y

Parabolas have a very useful reflective property. If a ray of light approaches
the parabola at a right angle with the directrix, then when it reflects off
the parabola it will reflect toward the focus. A large parabola can gather
electromagnetic waves which are aimed at the directrix, and combine all those
waves so that all pass through the focus. Satellite dishes and long range telescopes
utilize this property of parabolas.

The equation of a parabola with focus (0, 3) and directrix y = —3is 2% = 4-3-y.
If the focus is (0,3) and the directrix is y = 1, then notice that the vertex is
at (0,2). The distance from the vertex to focus is p = 1, so using properties of
shifting graphs we have (z — 0)? = 4(1)(y — 2). If the focus is (2,5) and the
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directrix is y = —3, then the vertex is at (2,1), and the distance from the focus
to the vertex is p = 4. Hence we have (z — 2)? = 4(4)(y — 1) as the equation. If
the parabola opens down instead of up, just multiply p by a negative number.
Similarly, if the parabola opens left, with directrix = 0 and focus (—6, 1), then
the vertex is at (—3,1), the distance from the focus to the vertex is p = 3, and
the equation is (y — 1)? = 4(=3)(x + 3).

3.2.2 Ellipse

Given two points (called foci) in the plane and a fixed number, an ellipse is
the set of points in the plane where the sum of the distances between the point
and the two foci is the fixed number. The major axis is the segment inside the
ellipse containing the two foci (each endpoint of this segment is called a vertex),
the minor axis is the largest segment inside the ellipse which meets the major
axis perpendicularly.

(0,b)

.z
"
<
-
Qo

i
g

If the foci are located at (+c,0) and the vertices are at (+a,0), then using the
2

2
x
distance formula you can show that an equation of the ellipse is — + % =1.
a?  a?—c

The distance from the center of the ellipse to the end of a minor axis we will

call b, and it turns out that b> = a2 — c?. Hence the equation of an ellipse

2 2
is = + % = 1. Of course we can shift the ellipse to have any center (h, k)

a2 b
2 2
and then the equation is (@ 2h) =+ € bzk)
instead, then you just intercﬁange x and y.

Ellipses have an interesting reflective property. A wave which starts at one
foci will reflect off the ellipse and pass through the other foci. The Tabernacle
at Temple Square has a roof with elliptical parts. One foci is at the pulpit, and
the other is located in a roped off section of the audience. You can drop a tiny
pin at the pulpit and hear it from the other foci. It sounds like a bag of nails
was dropped. The reason why is that in every direction sound waves are created,
and all of those sound waves converge at the other foci.

Let’s consider an ellipse with foci (1, £2) and vertices (1,+3). The center of
the ellipse is in the middle of the foci, located at (1,0). The ellipse has major
axis parallel to the y-axis. If it were centered at the origin, we would have the

= 1. If the foci are on the y-axis
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oyt A vy o .
equation o 4; P :21, or o3 + Fepr i 1. Since its center is at (1,0), we
-1 -0
write (z ) + (y ) = 1. You can tell immediately that the ellipse has its

larger side in the y direction because the number under y is larger.
2
The graph of the ellipse 326—5 + ?{—6 =1 is an ellipse centered at (0,0) where
the vertices are at (45,0) and the ends of the minor axis are at (0,44) (a? =
25,b%> = 16). The computation c¢? = a? — b?> = 9 shows that ¢ = 3, so the foci
are at (+3,0).

3.2.3 Hyperbola

Given two points (called foci) in the plane and a fixed number, a hyperbola is
the set of points in the plane where the difference of the distances between the
point and the two foci is the fixed number. The focal axis is the line containing
the two foci. The vertices are the points of the hyperbola on the focal axis.
Hyperbolas have an interesting reflective property. A wave which is headed
toward one focus will reflect off the hyperbola and start heading toward the other
focus. Hyperbolas are used in long range telescopes, as well as in triangulation
(finding the location of somethings based on three measurements).

If the foci are located at (+c,0) and the vertices are at (+a,0), then using the

2 2

distance formula you can show that an equation of a hyperbola is 2—2 - ﬁ =
1.2 If we define b so that b? = ¢? — a2, then we can write the equation as

T Y _ 1. Of course we can shift the hyperbola to have any center (h, k)

a> b
—h 2 —k 2
and then the equation is (2 ) + y )
a? b2

instead, then you just interchange x and y (so that the negative sign is in front

of the = terms instead of the y term).

2 y2

To graph a hyperbola of the form :% i 1, we first notice that hyperbolas
a

= 1. If the foci are on the y-axis

follow an asymptote. Solving for y we obtain y? = b? (z—z - 1) = Z—ZzZ (1 - ;—z)

This means that y = :I:%:c\ /1 — g—z As x grows, /1 — Z—z approaches one, and

so we see that the hyperbola follows the two lines y = :I:gx as x — oco. To
quickly make these asymptotes, draw a rectangle which extends a to the left
and right of the center, and b up and down from the center of the hyperbola.
The asymptotes are formed by extending the diagonals of this rectangle. Then
the hyperbola is drawn by plotting the vertices on the focal axis, and extending
the edges to follow the asymptotes.

Let’s consider a hyperbola with foci (1,45) and vertices (1,£3). The center
of the hyperbola is in the middle of the foci, located at (1,0). The focal axis

is parallel to the y-axis. If it were centered at the origin, we would have the
2 2 2 2

don VT y y
equation a2 02 — a2 = 32 52 — 32

(x—1)?  (y-0)?

with edges x = 1+4,y = 043, then plotting the vertices at 1 +3, and extending
the hyperbola to follow the asymptotes, as shown in the figure below.

= 1. Since its center is at (1,0),

we write — = 1. The graph is formed by making a rectangle
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3.2.4 Reflective Properties

We can use the the conic sections above to reflect light, sound, and radio waves
and obtain some useful tools. Satellite dishes use the reflective property of a
parabola to focus several signals at one point. If we build an elliptical wall, then
sound waves that emanate from one focus will bounce of the wall at every point
and travel to the other focus. A ray headed towards one focus of a hyperbola
can bounce off the hyperbola and head towards the other focus. The Figure ...
gives visual description of each property.u Let’s look at each conic section one
at a time.

3.2.5 Completing the square

We say that a quadratic polynomial y = ax? +bx + ¢ is a perfect square if we can
factor it as y = (dx + €)? for some d and e. For example 22 + 2z + 1 = (z + 1)?
and (2z — 3)? = 422 — 122 + 9 are perfect squares. If a quadratic is not a
perfect square, we can complete the square as follows. The polynomial 22 + 2z
is not a perfect square. However 2% +2r = 22 +22+1—-1= (x +1)%2 — 1.
We complete the square by adding and subtracting a constant term which will
allow us to factor the quadratic as a square, with a constant left over. We
can use completing the square to find the centers of ellipses and hyperbolas.
Recall that in general if we have 22 + bz, we can complete the square by writing
22+ bx + (b/2)% — (b/2)% = (x + b/2)% — (b/2)2.

The equation z2 4 2z + y? — 6y + 6 = 0 is actually the equation of an ellipse.
We can complete the square by looking at the x and y terms separately. We
write 22 +2r =22 + 22 +1—1 = (z + 1)2 — 1, and for the y terms we write
y?—6y=9y>—6y+9—9=(y—3)2—9. Then we put these into the original
equation to obtain ((z+1)2—1)+((y—3)2—=9)+6 =0, or (z+1)2+(y—3)2 =4
which is a circle of radius 2 center at (—1,3) (recall that circles are ellipses).
Similarly, we can show 922 — 632 + 36y = 0 is a hyperbola. We write

—6y%+36y = —6(y>—6y) = —6(y>—6y+9—9) = —6((y—3)*—9) = —6(y—3)>+54.

Hence the equation 922 — 6y2 + 36y = 0 becomes 922 — 6(y — 3)2 + 72 = 0, which
we can write as ) ( )2

T y—3

SR A

8 + 12

and recognize as a hyperbola which opens up and down, centered at (0, 3).
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3.3 Parametric Equations

How can we describe motion in the plane? One idea is to let ¢ represent time,
and then write two equations x = f(t),y = g(t) to describe the (z,y) location
of the point at any time ¢. This gives us our first example of a mathematical
function where we put in a number ¢ and get out a vector (z,y). This approach
gives us a valuable way to study motion in the plane. The equations z(t), y(t) are
called parametric equations of the curve. Written in terms of vectors, we write
7(t) = (x(t), y(t)), where the vector 7 is commonly used to represent position.
Throughout the semester we will be extending the language of functions to allow
use to put in vectors and get out vectors. Here are some examples of parametric
curves

1. (Circles) The parametric equations x = cost,y = sint for 0 < ¢ < 27
describe motion along a circle of radius 1 in the plane. In vector form
we write 7(t) = {cost,sint). You can convince yourself of this by plotting
the points for various values of ¢ (make a ¢, x,y table and start plotting
points). Alternatively, if you recall that cos®t + sin?t = 1, then you can
replace cost with 2 and sint with y to obtain 22 + 32 = 1, a Cartesian
equation for a circle of radius 1.

—,

(Ellipes) Similarly you can show that x = acost,y = bsint (7(t) =
(acost,bsint)) for 0 < ¢ < 27 gives equations for an ellipse of the form

2 2
xT
ZtpE=1

3. (Parabolas) The graph of a function of the form y = f(x) can always be
written parametrically as x = ¢,y = f(t), and then any equation we studied
in first semester calculus can be analyzed using parametric equations. The
parabola y = z2 can be parametrized using x = ¢,y = t? or as a vector
equation 7(t) = (t,t?).

4. (Hyperbolas) Using the identity cosh? z — sinh®2 = 1, the parametric
equations & = cosht,y = sinh ¢ give parametric equations for a hyperbola
2?2 —y? = 1, where —00 < t < co. Because coshz and sinhz trace

out a hyperbola as parametric equations, they are called the hyperbolic

trigonometric functions.

5. (Lines) To parametrize the line segment from (1,2) to (3, 3), think of a
particle starting at (1,2) and moving straight towards (3,3) so that it
takes 1 second to get there. The z value, which started at 1, increased
2 units per second, so we write x = 1 + 2t. The y value, which started
at 2, increased 1 unit per second, so we write y = 2 + t. The equations
r=1+2t,y =2+t for 0 <t <1 are now parametric equations for the line.
In terms of vectors, recall the vector equation 7(t) = mt + b where m is a
direction vector for the line and b is a point on the line. To get the direction
vector, we use “head minus tail” to obtain m = (3,3) — (1,2) = (2,1).
Since we are starting at (1,2), we’ll use the point b = (1,2). We now have
the vector equation 7(¢) = (2,1) t+ (1,2) = (2t + 1,¢ + 2) , which matches
our parametric equations. I remember this as “head minus tail times ¢
plus the tail.”

We need to learn how to write parametric equations given a curve, and we
need to learn how to find a Cartesian equation (remove ¢ from the equations)
when we are given parametric equations. We will practice this idea in class
all semester long. Obtaining a skill in parameterizing curves requires lots of
practice.
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3.3.1 Derivatives and Tangent lines

Let’s now look at how to find the slope j—g of a parametric curve? The chain
rule gives us a quick answer, we just divide the top and bottom by dt which
gives

dy  dy/dt

dr  dx/dt’
Often times we’ll use dots to denote the derivative with respect to ¢ and primes We don’t really divide by dt,
to denote the derivative with respect to z. Using this convention, we can write rather we think of y as a function

the first derivative as dy/dx = y/&. We can use this formula to find tangent of 2, use t};,efhggi,ndime to
2
y

J compute dy — dydz anq then
lines and more for parametric curves. To find the second derivative %%, we solve for dy/da.

at ~ dr dt’
first find 3/ = Z—Z and then repeat the process to compute %Z,) = % (again

dividing the top and bottom by dt).

Example 3.1. Consider the circle given by the parametric equations x = cost
and y = sint. The derivatives with respect to ¢ are

& =dz/dt =—sint and g =dy/dt= cost.

The derivative of y with respect to x is then

cost
= —cott.

i fd — i) —
ylde =9/ = =55

The derivative of y’ with respect to t is (—cott) = esc*t. Dividing this by
& = —sint gives ji—g = csc®t. To find the tangent line to the curve at t = 7, we
simply compute z = v/2/2, y = v/2/2, and dy/dx = — cot(r/4) = —1. Using
the point-slope form of a line, an equation of the tangent line is (y — v/2/2) =

—1(x —/22).

Now let’s look at finding derivatives using vectors. We can find a tangent
vector to the curve, and then use that to give equations for the tangent line.
Given the vector equation 7(t) = (z(t), y(t)), we know the derivative is simply
7(t) = (2'(t),y'(t)). Hence the rise is y’(t) when the run is z’(¢), which gives us
the slope as y/(t)/(t). This vector 7 (t) gives us a velocity vector for an object
moving through space. The length of this vector is the speed of the object and
the second derivative is the acceleration. Most of the ideas learned from first
semester calculus transfer directly over to vector form. The vector form is often
easier to remember, as you just take the derivative of each component.

Example 3.2. Let’s revisit the example above, but this time using vectors.

The derivative of 7(t) = (cost,sint) is ¥ (¢t) = (—sint,cost). At t = w/4 the

position is b = #(r/4) = (V2/2,v2/2) and a direction vector is 7 (m/4) =

(—v/2/2,/2/2). This means that a vector equation of the tangent line is 7(t) =

(—V2/2,7/2/2) t+(v/2/2,v/2/2) or just 7(t) = (—v/2/2t + vV2/2,V/2/2 + V2/2).
The line has parametric equations x = —\@/% +v/2/2 and y = \/?/275 + \/5/2
We can convert these to a Cartesian equation by solving the first equation for ¢

to obtain t = (z — v/2/2)/(—+/2/2) and then replacing ¢ in the second equation

to obtain y = —(x — v/2/2) 4+ v/2/2 (the same equation as before).

3.3.2 Arc Length

Recall that to find the length (As) along a straight line, we just need the change in
z (Az) and the change in y (Ay). The length is the hypotenuse of a right triangle
with edge lengths Az and Ay which means As = \/Ax2 + Ay2. When a curve
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is not straight, we start by breaking the curve up into a bunch of small pieces of
length As;. Along each small piece, the curve is approximately straight, so we
approximate each As; with /Az? + Ay?. In differential notation this becomes
ds = y/dx? + dy?. To find arc length s, we add up (>_ ds) the little pieces of
arc length and take a limit to get s = [, ds = [ \/dx? + dy?. For parametric

2
equations z(t),y(t),a < t < b we multiply by % to obtain f; \/ (%)2 + (%) dt.

If we use vector form 7(t) = (z,y), then the derivative ¥ = (2’,y’) has length
()% 4 (y')? which equals the integrand in the parametric form, which means

we can write
b 2 2
dx dy
s = ds:/ () —|—<) dt:/f'dt.
/C a \/ dt dt C| |

I like to remember ds = |7’|dt where distance (ds) equals speed (|r
(dt).

’]) times time

Example 3.3. Let’s find the length of the curve x = t,y = t? for —2 <t < 3.
In vector form we have 7(t) = (t,t?). The velocity vector is 7 (t) = (1, 2¢), which

means the speed is |7 (t)| = v/1 + 4t2. The arc length is then

3
/ds:/|F'|dt:/ V1 + 4t2dt.
-2

Remember, you just have to integrate the speed.

3.3.3 Surface Area

When you revolve a curve about a line, the radius of rotation is the distance to
the line. We will now develop formulas for find the surface area of a surface of
revolution given by rotating about a line.

Start by breaking the curve up into small pieces (as done before). The length
of each piece is approximately given by the arc length approximate As;, which
is a straight line segment from one end of the small portion of the curve to
the other. We assume that the radius is constant, namely the distance radius;
to the line. If we rotate about the z-axis, then radius; = y;. If we rotate
about the y-axis, then radius; = x;. The surface area of a frustrum of a cone is
Ao; = 2nradius;As; (we use o to designate surface area). Adding each small

pieces of surface area up o = Z Ao;, we get the integration formulas

b dz\?  [dy\®
= [ do= [ 27 radius ds = | 27 radi = =2 dt.
ag / g / T raairus ads /a T raairus (dt) —+ <dt)

Note that if you can remember do = 27 radius ds, then you just have to know
what the radius is, and what to use for ds. If you are revolving about the
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z-axis, then the radius of rotation is radius = y. Similarly, the radius is  when
revolving about the y-axis.

Let’s rotate the curve x = ¢,y = t2 for 0 < t < 3 about both the z and y-axis.
From the example in the arc length section, we have 7(t) = (¢, ), 7 (t) = (1,2t),
and |7 (t)| = v'1 + 4t2. If we rotate about the a-axis, then the radius of rotation
is y = t2, so we have

3
/27r7’ ds = /Qﬂ'y\f'\dt = / 21 (1%)V/1 4 4t2dt.

If we rotate about the y-axis, then the radius of rotation is x = ¢, so we have

3
/2m~ ds = /27mc|7*"|dt :/ 2m(t) V1 + 4t2dt.
-2



Chapter 4

New Coordinates

After completing this chapter, you should be able to do the following;:

1. Be able to convert between rectangular and polar coordinates in 2D.
Convert between rectangular and cylindrical or spherical in 3D.

2. Graph polar functions in the plane. Find intersections of polar equations,
and illustrate that not every intersection can be obtained algebraically
(you may have to graph the curves).

3. Find derivatives and tangent lines, area, arc length, and surface area using

polar equations.

4.1 Preparation and Homework Suggestions

Preparation Problems (11th ed)

Preparation Problems (12th ed)

Day 1 | 10.5:3  10.5:19 10.5:33 10.5:59 | 11.3:3  11.3:23 11.3:37 11.3:63
Day 2 | 10.6:5 10.6:19 10.6:33 10.7:9 11.4:5 11.4:19 11.4:?7  11.5:11
Day 3 | 10.6:35 10.7:21 10.7:29 10.7:17 | 11.4:?7 11.5:23 11.5:77 11.5:19

I’ll be creating HW problems for the missing Day 2 and Day 3 problems.
The following homework problems line up with the topics we will discuss in

class.

Topic (11th ed) Sec | Basic Practice Good Problems | Thy/App | Comp | Examples
Polar Coordinates 10.5 | 1-62 63, 64 E1-6
Graphing Polar Coordinates | 10.6 | 1-24, 29-30 25-28, 31-38 49, 50, 51 | 39-48 | E1-5
Area and Length 10.7 | 1-16, 19-27, 29-32 | 17, 18, 28, 34 | 33, 35, 36 El-5
Cylindrical and Spherical 15.6 | Derive Eqns

38
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Topic (12th ed) Sec | Basic Practice Good Problems | Thy/App | Comp
Polar Coordinates 11.3 | 1-66 67, 68

Graphing Polar Coordinates | 11.4 | 1-24, see handout 25-28 29-34
Area and Length 11.5 | 1-18, 21-28, see handout | 29 30-32

Cylindrical and Spherical 15.6 | Derive Eqns

Don’t worry about trying to solve by hand all the integrals in 10.7 or 11.5. If
you can set them up, and solve the simpler ones, you are doing great.

4.2 Polar Coordinates

We now introduce a new coordinate system, the polar coordinate system. This is
just another way of referencing points in the plane. We use r and 6 to reference
points. The distance from the origin to the point P is called r, and the angle
made by the positive z-axis and a ray from the origin through P is called 6.
The key equations = rcosf,y = rsinf,2? + y?> = r? come directly from a
right triangle with one vertex at the origin, another at the point P, and another
directly above or below P on the z-axis.

The point (r,6) = (2,7/2) represents the point (x,y) = (0,2). The point
(r,0) = (3, 7/4) represents the point (z,y) = (3@,3‘/75). Notice that the point
(1,7) in polar coordinates is the same as the point (1,37) or (=1, —7) in polar
coordinates. The same (z,y) point in the plane can be represented by infinitely
many different polar coordinate pairs.

4.2.1 Converting between polar and Cartesian coordinates
and graphing

The graph of r = 2 is a circle of radius 2 in the plane. The graph of § = 7/3 is
a straight line through the origin with angle of inclination 7 /3. The line z =4
can be rewritten in polar coordinates as rcosf = 4, or r = 4secf. The polar
coordinate equation r = 2sin 6 can be converted to rectangular coordinates by
multiplying both sides by r, giving r? = 2rsin §, and then using the key equations
to obtain 22 + y? = 2y, which is the equation of a circle 22 + y? — 2y +1 =1,
or 22 + (y — 1)2 = 1 centered at (0,1) of radius 1 (I completed the square to
complete this example). The key equations will allow you to convert from one
system to another. You may need to multiply both sides of an equation by r to
do a conversion (as in the last example).

To plot a polar equation, we just make an 7,8, x,y table and start plotting
points. You will discover after some practice that there are symmetries that
you can use to help you learn how to plot polar curves. To plot the curves by
hand, try putting in values of 8§ which are on the unit circle, in particular use
0,7/2,7,3w/2. When you connect dots on your graphs, realize that you wrap
around counter-clockwise as theta increases, and the variable r that is changing
is the distance from the origin. Some common curves are shown below:
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Cardioid Lemniscate Limacon Rose
r=1-—cosf r2 = sin 26 r=2cosf+1 r = cos 30

4.2.2 Finding Intersections

One problem with finding the intersection of two polar graphs is that there
are many ways to represent the same point in polar coordinates. Hence, when
you solve for the intersection of two polar graphs, you may not find all the
intersection points algebraically. Often you must graph the polar curves in
addition to finding the points of intersection. For example, the two curves
r = 1—cosf (a cardioid) and r = cosé (a circle of radius 1/2 centered at
(1/2,0)) intersect in three points. Solving for # we have cosf = 1 — cosf, or
2cosf) =1, or cosf = % This occurs when 6 = +%. Hence the two points of
intersection are (z,y) = (rcos@,rsinf) = (1/4,4+/3/4). The algebraic solution
mises completely the fact that (z,y) = (0,0) is an intersection point of the
two graphs. It is best to graph any polar curves when you wish to find their
intersection.

4.3 Calculus with new coordinates

4.3.1 Slope

If a curve is given parametrically as * = f(t),y = ¢(t), then we can find

d

% using the chain rule. Symbolically we just divide both dr and dy by
d dy/dt

dt, and obtain 9o y/ . In vector form, we can simply compute the
dx dx/dt

derivative #(t) = (dz/dt,dy/dt) as the direction vector, and then the slope
is (dy/dt)/(dxz/dt) (the change in the y component over the change in the z
component). For example, if # = 3t and y = > — ¢, then 7 (t) = (3t,2t — 1)

. dy dy/dt 2t—1
which means dr ~ dejdi 3l
parametric curves.

If the curve is given by a polar coordinate equation r(6) = f(6), then we use
the same principle. Recall = rcosf = f(0) cosf and y = rsinf = f(0) sin 6.
This means we have a parametric curve 7(0) = (f(0)cosf, f(6)sind). The
derivative of this vector valued function is

. This is how we find the slope of graphs of

7(0) = <;i)f(9) cosd, a%f(@) sin9>
= (f'(0) cos O — +£(0)sin 0, f'(0) sin 6 + f(6) cos 0)

) . dy 1'(0)siné + f(0) cosf .
hich s uUs — = . Don’
which gives us — 77(0) cos 0 — +£(0) sm 0 on’t worry about memorizing
dy/do
dz /o

this formula, rather realize that it is just
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4.3.2 Area

To find the area swept out by a segment from the origin to a polar curve, we first

1
need to recall that the area of a sector of a circle is 57“29. To derive this, just

T
recall the area of a circle is 7r2. So half a circle has area §r2. If you sweep out

0
0 radians, then you have covered o percent of the circle. So the area covered
77

is — - 2.
2T

1
Now we take the simple formula, §r29 and use it to derive the integral

formula | f %r2d9. Consider the region swept out by a segment from the origin
to the polar curve r = f(6) as 6 ranges from « to 8. Break up the region into
small sectors, each having interior angle Af. By making A# small enough, we
can approximate the area AA; of each sector by assuming the radius is constant,
f(6;). This gives AA; ~ 1 f(6;)>A0. To find the total area, we add up all the
little areas and take a limit as Af — 0, as follows:

_ , 1 L WU 1,
A= lim > AA;i= Alggoz S F(0:)A0 = /a S (0)%d0 = /a 5rdo.
We use the differential notation dA = %r2d9 to remember the integration formula.
If you can remember the area of a sector of a circle, then you can remember
the integration formula. You probably recall already the differential notation
dA = f(z)dx To find area, all you have to do is remember that area is the
integral of the area differential dA, so A = [dA = f; f(x)dz = ff 1r2df. To
find area between two polar curves, just find the area inside the outer curve,
and subtract the area inside the inner curve. The area inside the cardioid
r =1—cos# is given by fOZﬂ %(1 — cos 0)2df, which we would let a computer
calculate for us.

4.3.3 Arc Length

Finding length (As) along a straight line is done by finding the change in z
(called Az) and the change in y (Ay), and then using the Pythagorean identity
to get As = /Az2 + Ay?. If a curve is not straight, then start by breaking
the curve up into a bunch of small pieces of length As;. Along each small
piece, the curve is approximately straight, so we approximate each As; with

VAz? + Ay?. In differential notation this becomes ds = /dz? + dy?. To

find arc length s, we add up (>_ds) the little pieces of arc length and take a

limit to get s = [, ds = [, +/dx? 4 dy?. For a function y = f(z),a <z <b
whose independent variable is x, you can multiply ds by 1 = g—i to obtain ds =

2 2
Vida? + dy? = (%)2 + (g—z) dt =1/1+ (g—z) dt which means arc length
2
iss=[,ds= f; \/1+ (%) dzx. Similarly, for x = g(y),c < y < d we multiply
2
by % to obtain fcd 1/ (3—;) + 1dy. For parametric equations z(t), y(t),a <t <b

2
we multiply by % to obtain fab (%)2 + (%) dt. The polar coordinate version

2
ff \/r2 4 (%)Zdﬂ comes from the nontrivial simplification (3—5)2 + (%) =

r? + (%)2, where x = rcosf,y = rsinf. Hence, to find the arc length for
parametric or polar curves, we just integrate the arc length differential.
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4.3.4 Surface Area of a surface of revolution

When you revolve a curve about a line, the radius of rotation is the distance to
the line. We will now develop formulas for find the surface area of a surface of
revolution given by rotating about a line.

Start by breaking the curve up into small pieces (as done before). The length
of each piece is approximately given by the arc length approximate As;, which is
a straight line segment from one end of the small portion of the curve to the other.
We assume that the radius is constant, namely the distance radius; to the line. If
we rotate about the z-axis, then radius; = y;. If we rotate about the y-axis, then
radius; = x;. The surface area of a frustrum of a cone is Ao; = 2nradius; As;
(we use o to designate surface area). Adding each small pieces of surface area

up o = Z Aoc;, we get the integration formulas o = /da = /27r radius ds =

b 2 2 8 2
. dzx dy B ‘ 9 dr
/a 21 radius \/<dt> + (dt) dt = /a 21 radius /7% + (d@) df. Note

that if you can remember do = 27 radius ds, then you just have to know what
the radius is, and what to use for ds.
The surface area of a surface of revolution formed by revolving a polar curve

B B dr\ 2
about the z-axis is given by the formula / 2r|y|ds = / 2y sin 64 | r2 + (T) do,

dé
(03
provided y > 0. When we revolve about the y-axis we obtain instead the formula

do
If we rotate about a line such as x = 3, then the distance to the line

B B
27r\x—3\ds=/ 2m(rcosf —

g g dr\?
/ 2r|z|ds = / 27rcos 04/ r2 4+ () df, provided x > 0.

x = 3 is given by |z — 3|, so our formula is /
[e3%

dr\ 2
32+ (dg) de, provided x > 3 (otherwise we just leave the absolute values

in the problem).

4.4 Cylindrical and Spherical Coordinates

Cylindrical coordinates is an extension of polar coordinates to three dimensions.
The transformation T'(r, 60, z) = (rcos6,rsinf, z), or in parametric form

r=rcosf, y=rsind, z=z,

gives us a new way of viewing points in 3D. The variable r represents the
distance to the z axis, where 6 is the angle from the positive z-axis, and z is
the distance above the zy plane. The point (r,0,z) = (3,7/2,4) in cylindrical
coordinates is the same as the rectangular point (x,y, z) = (0, 3,4). If we let r
be a constant (like 7 = 1) then we get a sphere. If we let 6 be constant, we get
a vertical plane through the origin. If we let z be constant, we get a horizontal
plane.

Spherical coordinates (p, 8, ¢) are defined as follows. The distance from the
origin to the point (x,y, z) is called p. The angle 0 is the same as in cylindrical
coordinates. The angle ¢ is the angle between the positive z-axis and a ray from
the origin to (z,y, z). Using these definitions, we obtain the following equations
by considering the two right triangles with edges z,y,r and r, z, p:

x =rcosf tan =y/x T = psing¢cosf
y =rsinf r = psing y = psin¢gsinf

r2 =z2 4y p? =22 +y2+22 2z =pcoso
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Part of your homework will be to derive these equations yourself. We can
describe the spherical coordinate transformation as a function

T(r,0,0) = (psin¢ cos b, psin ¢sin b, p cos ¢) .

The point (p, 0, ¢) = (4,7, 7/4) is the same as the point (z,y,2) = (4/v/2,0,4/v/2).
If we let p be a constant (such as p = 1), then we obtain all points that are
the same distance from the origin, or a sphere. If we let 6 be constant, we get
a vertical plane through the origin. If we let ¢ be constant, we get all points
with the same angle down from the z axis, which creates a cone. Spherical
coordinates is a great way to describe sphere’s and cones.



Chapter 5

Functions

After completing this chapter, you should be able to do the following;:

1. Be able to describe cylinders and quadric surfaces in space.

2. Describe uses for function with varying input and output dimensions.
Be able to draw appropriate representations when the input and output
dimensions are 3 or less. Recognize by name and graph the different types
of functions, in particular parametric equations, space curves, functions of
several variables, vector fields, transformations, and parametric surfaces.

3. Find derivatives of space curves, and use the derivative to find tangent

lines to space curves.

5.1 Preparation and Homework Suggestions

Here are the problems to prepare for class in this module.

Preparation Problems (11th ed)

Preparation Problems (12th ed)

Day 1 | 12.6:1-12(match) 12.6:53 13.1:8 14.1:31-36(match) | 12.6:1-12(match) 12.6:37 13.1:8 14.1:13-18(mat;
Day 2 | 13.1:34 14.1:25 16.2:31 16.6:1 13.1:20 14.1:43 16.2:39 16.5:1
Day 3 | 14.1:38 16.2:35 16.6:5 16.6:15 14.1:58 16.2:43  16.5:5 16.5:15
Here is the homework that matches up with the material we are learning.
Topic (11th ed) Sec Basic Practice Good Problems Thy/App Comp
Cylinders and quadric surfaces | 12.6 | 1-44 45-76 77-84 85-94
Space Curves 13.1 | 1-18, 21-26, 38-42, 45 27-32, 37, 44, | 42, 43,
[48-55], 56-57 | 58-63
Space Curves 16.1 | 1-8
Functions of Multiple variables | 14.1 | 1-18(do 13-18), 29-32, 41-44 | 19-28, 33-40, 45-46 47-48 49-60
Cylindrical and Spherical 15.6 | Derive Eqns
Vector Fields 16.2 | 31-36 (by hand and maple) 31-36
Parametric Surfaces 14.1 | 57-60 (by hand and maple) 57-60
Parametric Surfaces 16.6 | 1-16 53a, 54a, 55, 56, 58

44



CHAPTER 5. FUNCTIONS 45

Topic (12th ed) Sec Basic Practice Good Problems Thy/App | Comp
Cylinders and quadric surfaces | 12.6 | 1-32 33-44 45-48 49-58
Space Curves 13.1 | 1-22 23-26 27-34 35-40
Space Curves 16.1 | 1-8

Functions of Multiple variables | 14.1 | 1-16, 31-48, 53-60 17-30, 49-52, 61-64 | 65-68 69-80
Cylindrical and Spherical 15.7 | Derive Eqns

Vector Fields 16.2 | 39-44 (by hand and maple) 39-44
Parametric Surfaces 14.1 | 77-80 (by hand and maple) 77-80
Parametric Surfaces 16.5 | 1-16 3la, 32a, 33, 34, 36

5.2 Cylinders and Quadric Surfaces

5.2.1 Cylinders

A right circular cylinder is formed by taking a circle in a plane (hence the word
“circular”), and then extending through each point of the circle a straight line
with direction vector orthogonal (hence the word “right”) to the plane. In
general, a cylinder is any surface which is created by extending through each
point of a curve a straight line in a fixed direction. The curve through which the
lines are drawn is called a generating curve for the cylinder. The intersection
of a cylinder with a coordinate plane is called a cross-section or a trace. Some
examples of cylinders are below, where the generating curve is in bold.

5.2.2 Quadric Surfaces

A quadric surface is a generalization of conic sections to three dimensions.
In general, it is the graph in 3D of any expression involving at most second
degree terms in z, y, and/or z. To graph a quadric surface, hold one variable
constant and then graph the resulting conic section in the plane which represents
the variable you held constant. Repeat this for a few different variables and
constants until you can piece together the surface. An illustration of this process
for %2 + 7’9—2 — 22 =1 follows on the next page, as well as some typical quadric
surfaces.
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-y -2 =1 —?+y? 422 =0 %+%+§:1 a? —dy+2°=1
Hyperboloid of 2 sheets Cone Ellipsoid Paraboloid

5.3 Functions in General

A function is a set of instructions (a relation) involving two sets (called the
domain and range). A function assigns to each element of the domain D exactly
one element in the range R. It is customary to write f : D — R when we want
to specify the domain and range. In this class, we will study what happens when
the domain and range are subsets of R (Euclidean n-space). In particular we
will study functions of the form f : R" — R™.

5.3.1 Functions of one variable: f:R! — R!

In the first year of calculus, the domain and range are always subsets of the real
numbers R. Many ideas from first semester calculus generalize to all dimensions,

but some do not. A typical example is f(z) = 22.

5.3.2 Parametric curves: f:R — R?

Parametric curves represent motion in the plane. A typical example is given
by x = 2cost,y = 3sint, which traces out an ellipse. We will also write these
functions as 7(t) = (2cost, 3sint).

5.3.3 Spacecurves: 7: R — R?

Space curves generalize parametric curves, but the output dimension is in 3D. So
this is a curve in space. The notation 7 : R — R? suggests that we are graphing
somting one dimensional in three dimensions. The graph of a space curves can
be thought of as a bent wires in space. A space curve traces out a path in space.
For each t, the position vector 7(¢) gives the position of a particle whose motion
is described by the space curve. Since the output is a vector, we often call space
curves vector valued functions. A graph of a space curve is made by picking
values for ¢ and plotting the corresponding points.

The derivative of a space curve is found by differentiating each component

d
of the space curve, which follows immediately by looking at the limit d—: =
lim 7(t+h) — 7(t)
h—0 h .
has direction vector equal to % and passes through the point 7(c¢), so an equation

. An equation of the tangent line to a space curve at t = ¢
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-

is I(t) = 7 (c)t + 7(c). If a space curve is used to describe motion, then velocity
isv(t) = Z—’:, speed is the magnitude of velocity |0], and acceleration is @(t) = ‘Cil—f,
just as was taught in first semester calculus.

The space curve 7(t) = {(cos(t),sin(t),t) is a helix which
wrapps around the z-axis. Its graph is shown on the right,
where 0 <t < 47, as well as the tangent line and acceleration
vector. The velocity and acceleration at any time t are ¥(t) =
(—sin(t), cos(t),1) and a(t) = (—cos(t),—sin(¢),0). When
t = 2m/3, we have 7(27/3) = (1/2,/3/2,27/3), ¥(27/3) = I\
(—v3/2,-1/2,1), and a@(27/3) = (1/2,—+/3/2,0). An equation of the tangent

line is [(t) = ¥(2m/3)t + 7(27/3) = (—v/3/2,-1/2,1) t + (1/2,V/3/2,27/3).

5.3.4 Functions of several variables: f : R? - R, f: R® - R
, [R*" =R

With functions of this type, the output dimension is always 1, while the input
dimension may be as large as needed. This type of function is used to measure
a quantity at each point in the plane (f : R? — R), at each point in space
(f : R® = R), or for every combination of n inputs (f : R® — R). The
temperature at each point in the plane would be modeled by a function of the
form T'(z,y). The wind speed at each point in space could be modeled by a
function of the form f(x,y, 2).

To graph functions of the form f : R? — R, we typically write z = f(z,y)
and then plot the function in zyz coordinates. Every pair (x,y) corresponds to
exactly one point (x,y, f(x,y)) in space. So functions of this form still pass the
“vertical line test.” We get 2D traces (vertical cross sections) of the function by
replacing x or y with a constant, and then creating a 2D graph of the resulting
function. A level curve is a graph in the plane of the equation ¢ = f(z,y) for
some constant ¢ (essentially a level curve is a horizontal cross section drawn in
the zy-plane). A few graphs and several level curves follow.

gt
g
il

A\

I \
4t \
4?551,’,,11 i 1oy ,}‘

flx,y) =9 —a22 —y?  level curves of f  g(w,y) =sinzcosy level curves of g

Functions with three inputs f : R®> — R would require 4 dimensions to
graph. Rather than graph functions in 4D, we instead look at level surfaces.
For the function w = f(x,y, z), we pick a constant w = ¢ and graph the surface
c= f(x,y,2). The level surface w = 1 for the function f(z,y, z) = 22 + y? + 22
is a sphere of radius 1. Quadric surfaces will show up often when you graph
level surfaces of functions with three inputs.

5.3.5 Transformations (changing coordinates): f : R*> —
R?, f:R® - R?

The polar coordinate equations = rcosf,y = rsinf require 2 inputs (r,6)
and give two outputs (x,y). This can be thought of as a function T'(r,0) =
(rcos@,rsinf). The book will never recognize this “transformation” as a
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function, because it does not define functions in general. However, every time
we change coordinate system, it will be valuable to give that tranformation a
name and recognize that it is indeed a function.

5.3.6 Cylindrical and Spherical Coordinates

Cylindrical coordinates is an extension of polar coordinates to three dimensions.
The transformation T'(r, 0, z) = (rcosf,rsind, z), or in parametric form

r=rcos, y=rsinf, z=z,

gives us a new way of viewing points in 3D. The variable r represents the
distance to the z axis, where 6 is the angle from the positive z-axis, and z is
the distance above the zy plane. The point (r,0,z) = (3,7/2,4) in cylindrical
coordinates is the same as the rectangular point (x,y, z) = (0, 3,4). If we let r
be a constant (like 7 = 1) then we get a sphere. If we let 6 be constant, we get
a vertical plane through the origin. If we let z be constant, we get a horizontal
plane.

Spherical coordinates (p, 0, ¢) are defined as follows. The distance from the
origin to the point (x,y, z) is called p. The angle 6 is the same as in cylindrical
coordinates. The angle ¢ is the angle between the positive z-axis and a ray from
the origin to (z,y, z). Using these definitions, we obtain the following equations
by considering the two right triangles with edges x,y,r and r, z, p:

x =rcosf tanf =y/z r = psing¢cosf

y =rsinf r = psing y = psingsind

r? =% +y? P =22+’ +22 2 =pcosd
Part of your homework will be to derive these equations yourself. We can
describe the spherical coordinate transformation as a function

T(r,0,¢) = (psin¢cos b, psin psin b, p cos @) .

The point (p, 0, ¢) = (4,7, 7/4) is the same as the point (z,y,2) = (4/v/2,0,4/v/2).
If we let p be a constant (such as p = 1), then we obtain all points that are
the same distance from the origin, or a sphere. If we let 6 be constant, we get
a vertical plane through the origin. If we let ¢ be constant, we get all points
with the same angle down from the z axis, which creates a cone. Spherical
coordinates is a great way to describe sphere’s and cones.

5.3.7 Vector Fields - f :R? - R? and f:R?® — R3

A vector field F(z,y) = (M(z,y), N(z,y)) (or F(z,y, 2) = (M(z,y,2), N(z,, 2), Pla,y, =)
is a function which assigns to each point in the plane (or space) a vector. Vector
fields are used to model gravity, forces, velocity, wind, acceleration, electric fields,
and many other things in nature. Wind depends on location, so it is important
to be able to have a way of assigning a different vector to every point in the
domain. Vector fields may be one of the most useful tools we have. You should
practice creating vectors given a description. For example, a vector field which

points to the origin in the plane, and has magnitude equal to the square of its
(=z,—y)

Varty?
times (direction).

To graph a vector field F"(x, y) = (M, N) in the plane, at each point (x,y)
we draw the vector F(z,y) with it’s base at (z,y). Since the vectors may be
rather large, computers will proportionally rescale all vectors so that the vectors
fit in the graph. A few examples follow.

distance from the origin is F(z,y) = (22 4 4?) . Remember (magnitude)
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F(z,y) = 2z +y,z —y)

5.3.8 Parametric Surfaces - f: R? — R3

Just as parametric and space curves describe 1 dimensional objects, we use
parametric surfaces to describe 2 dimensional objects in 3D. Notice that we
are mapping 2 dimensions into 3, so think of a parametric surface as a set
of instructions of how to place the 2D plane in space (where you can twist
the plane and stretch it based on the set of instructions). If you hold one
variable constant, then the graph of the resulting function is a space curve. To
graph a parametric surface, hold one variable constant and draw the resulting
space curve. Do this for a few values of each variable, and you will have
created a net of overlapping space curves from which you can piece together
the surface. Any surface of the form z = f(z,y) can be made a parametric
surface by writing 7(z,y) = (z,y, f(x,y)), which just says for each (z,y) to plot
the point (x,y, f(x,y)). We often use u,v as variables for a parametric surface
if those variables do not represent some other standard quantity. Cylindrical
and spherical coordinates may be very helpful as you learn to create parametric
surfaces. Here are some examples:

A
AR
TN
ANy
NI
Wy
QA

The functions are, from left to right,

(x,y) = <:z:,y,9—:1:2 —y2> for -4 <ax<4,-4<y<4

(u,v) = <ucosv,usinv,97u2> for 0 < u < 3,0 < v < 27 (cylindrical
coordinates)

7(0,¢) = (3cosfsing,3sinfsing,3cosp) for 0 < § < 2m,
(spherical coordinates)

7(u,v) = (usinucosv,ucosucosv,usinv) for 0 < u < 27,0 < v < 7.

3
<o<

ISE
I



Chapter 6

Derivatives

After completing this chapter, you should be able to do the following;:

1. Find limits, and determine where functions of several variables are contin-
uous.

2. Compute partial derivatives. Use them to find tangent lines and tangent
planes.

3. Be able to find the derivative of a function (as a matrix), and use it to
find tangent planes.

4. Find derivatives of composite functions, using the chain rule (matrix
multiplication). In addition, find derivatives when constraints are in a
problem.

Following you will find some suggested homework, and then my best attempt
at condensing the information we are learning into a set of concise lecture notes.
These are not intended to be a complete resource. As you read my lecture notes,
please try an example like each example you see. Read the material in the text
as well, and expand your knowledge of the material you see here. I am trying to
have my lecture notes follow the model found in “Preach My Gospel,” where
the gospel is taught in a short complete concise manner, with additional study
suggestions given.

6.1 Preparation and Homework Suggestions

Preparation Problems (11th ed) Preparation Problems (12th ed)
Day 1 | 14.2:37 14.3:39  14.3:43 14.6:11 14.2:43 14.3:39  14.3:43 14.6:11
Day 2 | Handout #4 14.4:9 14.4:15 16.6:49 | Handout #4 14.4:9 14.4:15 16.5:27
Day 3 | 14.9:2 14.4:47  14.3:51-52  14.4:42a | 14.10:2 14.4:49  14.3:55-56 14.4:44a

Here is the homework that matches up with the material we are learning.
Remember to work down the first column ASAP in the next day or two. Just
seeing the problems and attempting them for 2 minutes will prepare you for
what we are learning.

50
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Topic (11th ed) Sec Basic Practice Good Problems | Thy/App
Limits and Continuity 14.2 1-34,35-42 45-48, 49-50 51-68
Partial Derivatives 14.3 1-46, 47-52, 63-75 53-56, 57-62, 76-77
Total Derivative Class | handout has problems do them all check your solutions
Chain Rule 14.4 1-12, 13-24 (use matrices, not the tree) | 25-40, 41-50
Tangent Planes 14.6 9-12
Tangent Planes 16.6 | 49-52
Differentials 14.6 19-30 47-58
Partial Der. w/ Constraints | 14.9 | 1-8 9-12
Topic (12th ed) Sec Basic Practice Good Problems Thy/App
Limits and Continuity 14.2 | 1-40, 41-48 49-60 61-80
Partial Derivatives 14.3 | 1-50, 51-56, 61-62, 73-87 | 57-60, 63-70, 88-89
Total Derivative Class | handout has problems do them all check your solutions
Chain Rule 14.4 1-12, 13-24 (use matrices, not the tree) | 25-42, 43-50
Tangent Planes 14.6 9-12
Tangent Planes 16.5 27-30
Differentials 14.6 | 19-30 49-62 31,32
Partial Der. w/ Constraints | 14.10 | 1-8 9-12

6.2 Limits and Continuity

We start with some notation. We will denote functions using f R - R™
where n is the number of inputs, and m is the number of outputs. We will use ¥
to represent an input, and ¥ to represent an output. For example, if z = f(x,y),
then in vector notation we would write ¢ = f(f), where § = (z) and T = (z, y).
Using this notation allows us to restate most of the theorems of multivariable

calculus using the exact same notation as was learned in single variable calculus.

—

The parametric surface #(u,v) = (z,y, z) would be written as f(#) = ¢ where
Z = (u,v) and § = (z,y, 2).

Recall that in first semester calculus we defined the limit of a function as
follows. We say that a function y = f(z) has limit L at = ¢ if for every ¢ > 0
there exists a 0 > 0 such that if 0 < | —¢| < d then |f(z) — L| < e. The idea is
that you can make the output values y as close to L as you want (within € of
L) by requiring the input values x to be very close to ¢ (within 6 of ¢). This
generalizes to all dimensions by placing vector symbols above everything. We
say that a function i = f(f) has limit L at & = ¢ if for every € > 0 there exists
a 6 > 0 such that if 0 < |# — @ < & then |f(Z) — L| < e. We interpret absolute
values as distance (the square root of the dot product). Learning to use the
formal limit definition to prove theorems about limits and derivatives will be
deferred to a course in real analysis, where an appropriate amount of time can
be spent on the topic. For now, the main idea is that a function has a limit of
L at ¢ if the ¢ values are close to L for all £ values close enough to ¢. We say
that a function is continuous at Z = ¢ if the limit of the function L equals f(2).

The main difference between single variable limits and multivariate limits
is the number of ways to approach a point. With one input variable, we can
only study limits from the left and right. With more input variables, there are
infinitely many ways to approach the point of interest. A limit exists at ¢ if and
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only if the limit exists along every approach to ¢, however there are infinitely
many different ways to approach this point.

Example 6.1. The function f(z,y) = ii;gj has a limit at every point in the

plane except at the origin. As long as (a,b) # (0,0), we can write

. 22 — g2 :a2—b2
(z,y)—(a,b) 2 -+ y2 a? + b2’

because rational functions are continuous as long as the denominator is nonzero.
If (a,b) = (0,0), then let’s consider three different ways of approaching the
origin.

e If we look at (z,y) values on the z-axis, then we compute
-y

lim —_ =
(@ 9) = 0,00 x2+y2 20 32
y=0

o If we look at (z,y) values on the y-axis, then we have

2 2 2
. Ly Y
1m 5 = nn—szl.
(@, 9) = (0,00 X+ Y y—0 Yy
x =0

e If we look at (z,y) values on the line y = mz, then we have

2?2 — 2 . 2% — (mx)? _2?(1-m?)  1-m?

lim —— = lim = lim = .
@ = 0,0 x24+y2 22022+ (mx)?2 =0 22(1+m2) 1+ m?

Yy = mx

From our work above, we see that the limit is not the same along different
approaches and we say that the function f has no limit at the origin.

When a function has a limit, that limit will be the same regardless of the
approach we use. In the functions below, the first does not have a limit at the
origin, the second does, and the third is discontinuous along an entire curve

2

Fla,y) = 2

6.3 Partial Derivatives
df

If a function f has only one input x, then the derivative is defined to be i
x

L f )~ f(@)

h—0 h

to changes in a function. This idea is represented by the equation Ay =~ f'(z)Ax,

or in differential form we write dy = f'(x)dz. An equation of a tangent line is

. The derivative gives the best possible linear approximation
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found by noticing that a change in y is approximately y — f(c¢) when the change
in x is & — ¢, so the differential form dy = f'dx becomes (y — f(c)) = f'(¢)(x —¢).
I repeat, the derivative gives the best possible linear approximation to changes
in a function.

If a function has more than one input variable, then division by the vector his
not well-defined, so we run into a problem with generalizing derivatives. Instead,
we start with partial derivatives, which approximate change in the function if we
hold all other variables constant and just differentiate with respect to one variable.
For the function f(z,y), we define the partial derivative of f with respect to z

af f(x+hvy)_f(xay)
h

as fr(x,y) = Jz = % = AIL%

0 x k) — f(x
of f with respect to y as fy(z,y) = f, = a—f = %13% @yt 2} it ,y).
Notice that f, computes a limit as y is held constant and we vary x. For
f(x,y) = 322 + day + cos(xy) + 32, we obtain f, = 6z + 4y — ysin(xy) + 0
and f, = 0+ 4z — zsin(zy) + 3y2. Partial derivatives are found by holding all
other variables constant, and then differentiating with respect to the variable
in question. Practice computing partial derivatives with lots of functions. The
homework should go very quickly, but this skill needs plenty of practice so that
partial differentiation is done immediately.

Partial derivatives approximate change in a function as you vary only one
variable, hence a partial derivative gives slope in the direction which is varied.
For the function z = f(z,y), f: is the slope of a line tangent to the surface
z = f(x,y), where the tangent line is parallel to the xz-plane. A direction vector
for this line is (1,0, f,) (every increase in x of 1 unit yields an increase in the
output z of f, units, and y does not change). Similarly (0,1, f,) is a direction
vector of a line tangent to the surface, where the line is parallel to the yz-plane.
The cross product of these two vectors is 7 = (—f,, —fy, 1), which is a normal
vector for the tangent plane to the surface. For the function f(z,y) = 9+x —y?
at (Iay) = (172); we have f(:z:,y) =6, f"c(xvy) =1, fy(xay) = —2y, fx(lvz) =1,
and f,(1,2) = —4. So a tangent line to the surface at (1,2,6) in the z direction
is #(t) = (1,0,1) t + (1,2,6), in the y direction is 7(¢) = (0,1, —4) ¢ + (1, 2, 6),
and an equation of the tangent plane is —1(x — 1) +4(y — 2) + 1(z — 6) = 0.
The pictures below illustrate these lines and planes

, and the partial derivative
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For the parametric surface #(u,v) = <u,v,9 +u— v2>, we compute 7, =
(1,0,1) and 7, = (0,1, —2v), which are direction vectors for tangent lines to the
surface (notice they are the same vectors as in the previous example). At the
point (u,v) = (1,2), the tangent lines and tangent plane are exactly the same
as those for the function z = f(z,y) = 9+ x — 3.

Since a partial derivative is a function itself, you can take derivatives of
a partial derivative as well, giving what is called higher order partials. For
the function f(z,y,2) = 2 + 4wy? — yz3, we have f, = 2z + 4y?, f, = 8xy —
23, f. = —3yz?, and so we obtain the following second order partial derivatives
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g%f:v :f:rzzz aayfm fzy :8y>§)sz :f:rz 7axfy fyz = 8y, aayfy =
fyy :81‘,%]2} fyz = 273$fz = fzw 7ayfz = fZ' 322’£zf2 =
f.. = —6z. Notice that fxy = fyu, foz = fow, and foy, = f,.. As long as
a function is two times continuously differentiable, then second order partial
derivatives using the same variables but in a different order will always be the
same. This fact will get used periodically throughout the class.

6.4 The Derivative

The derivative of a function f : R® — R™ is an m X n matrix written D f(Z),
where the columns of the matrix are the partial derivatives of the function
with respect to each input variable (the first column is the partial derivative
with respect to the first variable, and so on). Some people call this derivative
the “total” derivative instead of the derivative, to emphasize that the “total”
derivative combines the “partial” derivatives into a matrix. This definition of the
derivative gives the best possible linear approximation to changes in a function.
A full course in linear algebra is needed to fully understand the significance of
this statement, however we can use the derivative as a matrix to simplify a lot
of our work in multivariable calculus.

Some examples of functions and their derivative follow. When the output
dimension of a function is one, then the matrix has only one row. In this case,
we often consider it as a row vector and the derivative is called the gradient of
f and written V f.

Function Derivative
fla) =2 Df(x) = [2x]
Sy . 3sint
7(t) = (3cos(t), 2sin(t)) [ 9 cost }
—sint
7(t) = {cos(t),sin(t), t) D7(t) = | cost
1
f(xvy) :9—$2—y2 Df(it,y) :Vf(x,y) = [—2;13‘ _Qy]
flx,y,2) =2 +y+ a2 Df(x,y,2) =V f(x,y,z) = 20 +2* 1 2z
, 0 —1
F(a,9) = (0. Few =[] )
B cosf —rsinf 0
F(r,0,z) = (rcos6,rsin, z) F(r,0,z) sm@ rcos@ 0
1
1
Fu,v) = (u,v,9 —u? —v?) | Dif(u,v) = | 0 1
—2u —2v

To emphasize that the derivative is the best possible linear approximation
to changes in a function, replace f' in the single variable equation dy = fldx
with the derivative Df(Z) to obtain df = D f(Z)dZ (d[outputs] = D fd[inputs]).
For a function z = f(x,y) we obtain dz = D f(z,y) Bﬂ = [fgg fy] [;lgaj

fedx + fydy using matrix multiplication. To get an equation of a tangent plane
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to a surface at (a,b, f(a,b)), we let dz =z — f(a,b),de =z —a,dy = y — b, and
then obtain =~ f(a.0) = (£ £,] 27 }] = £o@.0)(e = @) + £y (el - 0

This is equivalent to —f;(a, b)(z —a) — fy(a,b)(y —b) + 2z — f(a,b) = 0, which is
the equation of a plane with normal vector @ = (—f;, —f,, 1), which we already
obtained in the partial derivatives section. For the function f(z,y) = 9+$—y2 at

-1
_9]"
This version of finding tangent planes generalizes to all dimensions and gives
the “tangent space.”

This optional paragraph explains why the deﬁnltlon of the derivative above
makes sense. Since division by h is not defined if  is a vector and not a number,
we modify the definition of the derivative to define the derivative of a function in
general. The definition of the derivative when written using the formal definition
of a limit requires that we examine the inequality |w — fl(z)] < e
Multiply both sides by |k| and obtain |f(x + h) — f(z) — f'(z)h| < €|h]. The
derivative of a function f : R™ — R™ gives the best possible linear approximation
to changes in the function. A course in linear algebra will show you that this
means the derivative can be represented by a matrix, and then the equation
|f(Z+1)— f(Z)— Df(Z)h| < €|h| shows that D f(Z) must be able to multiply on
the right by vectors of size n (hence it has n columns), and the product D f(Z)h
must give a vector with m components (hence the matrix has m rows). By

(x,y) = (1,2), an equation of the tangent plane is simply z—6 = [1 74}

considering the vector h= (h1,0,...,0), it can be shown that the first column
of Df(Z) equals the partial derivative of f with respect to the first variable.

6.5 The Chain Rule

For multivariable functions, we can form the composition f o g of two functions
f R™ — R™ and f R™ — R* provided that output dimension of g is the same
as the input dimension of f The composition f ( g(Z)) essentially asks us to put
into the function ¢ a vector & of size r, which will give us a vector () of size s.
If s =n, then we can put g(Z) into the function f, and we get a vector f(g‘(f))
of size m. For examples, if f(z,y) = 22 —y and §(r,s,t) = (3r +4s,t* —r),
then f(g(r,s,t)) = f(3r +4s,t> —r) = (3r + 45)? — (t* — r). We now discuss
how to differentiate such functions.

Recall in first semester calculus that the chain rule states (f o g)'(z) =
f'(g(x))g’(x) (the derivative of the outside function multiplied by the derivative
of the inside function). The high dimensional version of the chain rule is exactly
the same, namely D(fog)(Z) = Df(§(Z))DJ(Z), and a proof (which we will leave
to another course) is essentially the same. The product is matrix multiplication.
Most textbooks describe a “tree rule” which is just a way of organizing matrix
multiplication without referring to a matrix.

We now look at a few examples. Suppose the temperature at each point
in the plane is given by f(z,y) = 9 — 2% — 4%, A particle moving through
the plane along the curve = ¢ + 1,y = ¢?> will have a temperature given by
fr(t) = f(t+1,t2) =9 — (t+1)? — (¢?)2. We will find the rate of change of
the temperature of the particle as it moves through the plane, which we call
%. I like to start by giving the path © = t 4+ 1,y = t2 a name, for example
let () = (¢t + 1,*). Then the composition f(7(t)) is the temperature of the

particle at any time ¢. Hence, we are really trying to compute d(zfr), which

is ugly to write so most people abbreviate it with 4 dt even though there are
no t’s in the definition of f(z,y). The chain rule says that I can compute this
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value by finding D f(z,y) and D7(t), evaluating D f(z,y) at 7(t) which gives
me Df(7(t)), and then multiplying the matrices together. The calculations are
Df(z,y) = [-2¢ —2y| and DF(t) = Bt], so Df(F(t)) = [-2(t+1) —2(7)].
We then calculate

D(for)(t) = Df(F())Dr(t) = [-2(t+1) —2(t*)] Bt] = (=2(t+1)(D)+(=2(t*) (20).

We can also do this by just replacing = and y with what they are in terms of ¢,
and then differentiating f(r(¢)) =9 — (¢t + 1)* — (¢*)?. This second approach
may at first seem easier, but the first approach becomes essential when you want
to do implicit differentiation and high dimensional calculus. We just developed
df Ty of de  Of dy
the formula = [fe fy] [yf} = faxe + fyye = ordr Taydr
For f(z,y,2) = 3wy + 2% and ¢ = 2u + v,y = u — v,z = uv, we can
compute both % and % using the chain rule. I start by naming the function
x=2u+v,y=u—v,2z=uv using something like #(u,v) = (2u + v,u — v, uv).
Then the derivative D(f o 7) is found by multiplying

Ty Ty
D(f © F)(“av) = Df(l‘7y, Z)DF(uvU) = [fr fy fz} Yu Yo
Zu 2y

2 1

=3y 3z 2z] |1 -1

v u

= [By)(2) + B2)(1) + (22)(v)  (By)(1) + (Bz)(=1) + (22)(u)] -
Replacing z,y, z with what they are in terms of u and v gives
D(fo7)(u,v) = [6(u—v)+3(2u+v)+2uw? 3(u—v)—3(2u+v)+ 2u?v

The first column of the matrix is the partial with respect to u, so % =6(u—v)+
2
.

3(2u +v) + 2uv? and the second column gives % =3(u—v)—32u+v)+2u

We just developed the general formula

D(fOF)(U,U) = [fu fv] = [fa:xu'i'fyyu"'fzzu JzTo +fyyv +fzzv] .

For an equation of the form 3%z + x — 2y = 1, we learned how to calculate
% implicitly in first semester calculus. We now learn a quick method using
high dimensional calculus. Let f(z,y) = y?z + x — xy and 7(z) = (z,y(x))
be a parametrization of the curve. Composition shows that f(7(z)) = 1, so

1
we compute D(f or)(z) = Df(F(x))Dr(z) = [fz fy] [dy} which equals 0
dx
because the composition equals the constant 1. Matrix multiplication gives
2
fo + fyg—‘z =0 so %’ = —jﬁ—: = —%71__;’. This idea can be generalized to

do implicit differentiation in any setting. This illustrates an important idea.
Some problem become easier to solve in higher dimensions. Sometimes the only
solution to a problem is found by looking at the problem in a higher dimensional
space where there are more tools available.

6.6 Partial Derivatives with constrained variables

When you have many variables in a problem, it is important to specify which
are independent, and which are dependent. Your choice could have drastic
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consequences on the values of the partial derivatives. When there are many vari-

0
ables in a problem the notation (aw) means that z,y,t are the independent
x
Yt
variables, and the other variables all depend on x,y,t. If the variables that you

see in the problem are x,y, z, and t, and w is a function of all of these variables,

T
T
then often it is helpful to create a diagram of the form |y| — gz/ — [w] to
t
t

remind yourself how the variables relate, namely that z depends on the other
variables. Then you can use the chain rule to find the partials of w with respect
to any variable you wish.

For example, let w = 2% — 4% + z —sin(t) and = — y? + 3z = 5t (the equation
x —y? + 3z = 5t is called a constraint because it puts a limitation on the values

0
you can pick for x,y, z, and t). Then <8w) is found in one of two ways. The
x

Y,z
first approach (which you can use for the homework and exams) is to replace t

with what it is in terms of z,y, and z, and then take the partial with respect to
x. This is by far the quickest route, if you are just after a number. In this case
we get t = (z — y? +32)/5 and so w = 2% — y? + 2z — sin((z — y* + 32)/5). Then
(811} :2x—0+0—cos((x—y2—l—3z)/5)-1.
ox o 5
The other option involves a theoretical understanding. Start by making the
x

Y
z

x
diagram |y| —
z

— [w] Notice that ¢ is the dependent variable, so we

t
have ¢t = %(m —y% + 32). This is a composite function, and the derivative is

Ty Ty X 1
Dw(z,y,z) = [wy wy w. w Z’” ZZ/y zz =[2z -2y 1 —cost] 8

T Yy z

te t, t 1/5

ow
Since I am only after (8> , I want the partial with respect to x which means
x
Yz
1 1

the first column of Dw(x,y, 2) or 2z — 1 cos(t) = 2z — £ cos(%(z — y* + 32)).

The second column would give 6710 , and the third column a—w . If on

dy 0z

T,z T,y

the other hand I were asked to compute (?) , then x = 5t — 32 + y? and so
z
y,t

Y,

Ty T, Xy 2y

1

Duw(y, z,t) = [wy wy, w. w Zy ZZ Zy =[2z -2y 1 —cost] 0
y Fz Zy

t, t. t, 0

ow
% )
second column of Dw(y, z,t).
As a last example, if w = 22 +y + 22 and 22 +y = 23, then we can compute

0
(8w) by writing y = 23 — 22 and w = 2% + (2% — 2%) + 2% = 23 — 22, The
x

partial with respect to  when y is dependent is hence 0. On the other hand, we

which means that < > =2(x)(=3) + (1)(1) = —6(5t — 32 + 4?) + 1 is the
y,t

o = O

—_ O O Ot
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Ox
The derivative of this with respect to x is 2z + %(1’2 + y)_1/329177 which is not
zero. Specifying which variables depend on which makes a difference when
taking derivatives where constraints are present.

0 ) .
can compute (w) by writing z = /22 +y and w = 2% + y + (/22 + y)2.
y



Chapter 7

Motion

After completing this chapter, you should be able to do the following;:

1. Develop formulas for the position of a particle in projectile motion if
we neglect air resistance and consider only acceleration due to gravity.
Develop formulas for the range, maximum height, and flight time of the
projectile.

2. Develop the TN B frame for describing motion. Add to your model the
concepts of curvature, osculating circle, torsion, and the tangential and
normal components of acceleration. Be able to prove the relationships
that you develop in the TN B frame.

In this unit, we will focus more on the relationships between the ideas we are
learning, rather than just the computations.

7.1 Preparation and Homework Suggestions

Preparation Problems (11th ed) Preparation Problems (12th ed)

Day 1 | 13.2:3 13.2:5  13.3:3  13.3:11 | 13.2:21  13.2:23 13.3:3  13.3:11
Day 2 | 13.2: 11 13.3:18 13.4:1 13.4:9 | 13.2: 29 13.3:18 13.4:1 13.4:9
Day 3 | 13.4:3 13.4:21  13.5:1 13.5:9 | 13.4:3 13.4:21  13.5:9  13.5:1
Day 4 | 13.4:7 13.5:11  13.5:15 13.5:17 | 13.4:7 13.5:11  13.5:15 13.5:17

Here are the suggested homework problems for this unit.
Topic (11th Ed.) Sec | Basic Practice Good Problems Thy/App | Comp
Space Curves (review) | 13.1
Projectile Motion 13.2 | 1-13 14-23 24-31
Arc Length 13.3 | 1-8, 11-14 9-10, , 15-17 18-20
Curvature * 13.4 | 1-4, 9-16, 21-22 | 5-7(do for sure), 17-19, | 20 23-26, 27-34
Torsion * 13.5 | 1-16, 17-24, 27 25, 26, 28 | 29-32

59
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Topic (12th Ed.) Sec | Basic Practice Good Problems Thy/App | Comp
Space Curves (review) | 13.1

Projectile Motion 13.2 | 1-24 25-36 37-42

Arc Length 13.3 | 1-8, 11-14 9-10, , 15-17 18-20

Curvature * 13.4 | 1-4, 9-16, 21-22 | **5-7(do for sure), 17-19, | 20 23-26, 27-34
Torsion * 13.5 | 1-16, 17-24, 27 25, 26, 28 | 29-32

* Don’t do too many by hand in the curvature and torsion sections, as they can be very time
consuming. Practice a few so that you can make sure you understand the computations, but
then spend the rest of your time reviewing the theory and proving the relationships that exist
among the vectors. Though difficult, the best problems in my opinion in 13.4 and 13.5 are
problems 5-7 in 13.4.

7.2 Projectile Motion

If an object has initial velocity 7, initial position 7, and acceleration @(t), then
you can find the position at any given time by integrating, as ¢(t) = [ d@(t)dt, and

7(t) = [ 7(t)dt. Projectile motion describes the ideal path of motion of an object
which is fired into the air at a given angle, « the firing angle, and a given speed, vg,

assuming that gravity d@(¢) = (0, —g) is the only force which acts on the particle.

Notationally we let vy, = vg cos a, vy, = vosina, Uy = (U, Uy,), To = (Z0, Yo)-
Integration gives ¥(t) = at+ 0y, and 7(t) = at*+ Uyt + 7. Hence we have z(t) =

Vgt + g = vg cOs 4+ xg and y(t) = —%gt2 + vyt +yo = —%th + vg sinat + yg.

To simplify the calculations, most of the time the coordinate axis is placed
with the origin at (xo,yo), which simplifies the formulas to be x(t) = vt and
y(t) = —39t% + vyt

Using this formula, we can compute the height, flight time, and range by
using tools from first semester calculus. The max height is achieved when

the velocity is 0 in the y direction. Hence we want to solve 0 = —gt + vy,
or t = vy, /g = vosina/g. The max height is the y value at this value of ¢,
so the max height is ymax = —29(vy,/9)? + VyoVy, /g = %vgo/g. The range

is found by calculating the = value at twice this time, or R = vy, (2vy,/9) =
203 sin avcos a/g = sin(2a) /g.

The main point of this section is not if you can memorize the formulas and
put numbers in them, but rather that you can actually derive these formulas.
The homework in the textbook provides you with a bunch of problems where you
are just putting in numbers and solving. I suggest that you start each problem
from scratch and derive the formulas (as this is what I will test you on).

The following example comes from the textbook. However, the approach
I use to solve it here is slightly different. An archer stands 6ft above ground
level and shoots an arrow at an object which is 90 feet away in the horizontal
direction and 74 ft above ground. The archer needs the arrow to hit the target at
the peak of its parabolic path. For the purposes of this example, let g = 32ft/s%.
(see the textbook, page 908) What initial velocity and firing angle are needed
to achieve this result? To answer this, we first decide where to place the
origin. We will place the origin at 6ft above ground, so that the max height
is 68 ft and it is achieved 90 ft away horizontally. We need to solve 7(t,,) =
(90,68) = (Vgytm, —5gtZ, + vyot), and T(tm) = (Vag,0) = (Vay, —glm + vy, )
for i, vy, vy,, as then v = /2 +vZ and a = arctan(vy,/vs,). We have
0 = —gtm + vy, OF ty, = vy, /g. The y coordinate of the position gives 68 =
—59(vye/9)? + vyovy, /9 = 502, /9. Hence vy, = /2-68-g. The 2 coordinate of
the position gives 90 = v,,vy, /g, or vz, = 90g/vy, = 90g/+/2- 68 - ¢. The rest
of the variables can now be solved for to find the initial firing angle.
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7.3 Arc Length

Recall the formulas for arc length are s = fab V22 + 1dz, s = fcd W1+ [%des
b

‘é—f 2 4+ [%]th. Using differential notation ds = /dx? + dy?, these formu-
las can all be summarized by the formula s = f ¢ ds, where C' represents the
curve over which we are integrating. This notation introduces the notation
for line integrals By parametrizing the curve C as r(t) = (z(t), y(t)), we see
s = fc ds = f |’ (t)|dt. In other words, a little change of arc length ds is equal
to the product of speed |7 (¢)| and a little change in time d¢. This is the same
formula learn in grade school: distance = rate x time, where now we are just
adding up a bunch of distances using definite integrals.

7.3.1 Reparametrizing by arc length

From now on we will assume that curves are smooth, which means that the
curve is differentiable and 7 (t) # 0 (the velocity is never zero). When we follow
a space curve 7(t), the speed |7 (t)| traveled depends on the parameter t. At
some points along the curve the speed could be larger than at others. We can
introduce a new parametrization by speeding up if the the speed is less than one
and slowing down if the speed is greater than one. This new parametrization will
move at constant speed 1, so that every one unit increase in time results in a one
unit increase in length. For a curve 7(t), a <t < b, let s(t) = fat |7 (T)dT (note
that we use 7 as a dummy variable since t is already used in the bounds of the
integral). We see that s(t) calculates the length traveled by the curve between a
and ¢. The fundamental theorem of calculus shows that % = |(¢)|. Since the
speed is never zero, we can find an inverse function ¢(s). The inverse function

theorem states that % = ds} &= O] ( oIE The chain rule then gives the derivative
of 7(t(s)) with respect to the arc length parameter s as % = %% = |Tf(’t)|,

which is a unit vector. Hence if we use s as the parameter, we traverse the curve
at constant speed 1. Theoretically it is possible to always reparametrize any
smooth curve. However, in practice it may not always be easy to actually find
the parametrization.

For the helix 7(t) = (cos(t), sin(t), t), we can compute the following: r’'(t) =
(—sin(t),cos(t), 1), |r'(t)| = /(—sint)2 + (cost)? +12 = /2. The length of
one coil is s = fozﬂ V2dt = 27y/2. The arc length parameter is s(t) = fg V2dt =

tv/2. Hence t = s/\f So if we reparametrize the curve using the composite

F(t(s|)) | <cos(f) SID(T) 7> we find dr = <—% Sin(%),%cos(%)7%>
and =1.

7.4 The TNB frame

For a space curve 7(t) = (x(t),y(t), 2(t)), the TNB frame is an orthogonal
collection of unit vectors which describe the tangential, normal, and binormal
(tangential cross normal) directions of motion. Such a frame is necessary for
a stationary observer to understand how the world looks to a moving object.
The T'N B frame gives an observer a way to place points in an xyz coordinate
frame. Imagine two friends, one on the ground and another on a spacecraft
which moves in the tangential direction (T) with the left wing always pointing
in the direction N of acceleration which is orthogonal to the tangential direction
of motion. Then the binormal direction (E) is the direction the head of the
person on a spacecraft would point. The TN B frames gives a way of allowing
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the observer on the ground to give directions to the person in the spacecraft.
The following table summarizes the discussion which follows.

Unit Tangent Vector T g—g = ZZZE = ‘:4,8‘
Curvature Vector R ‘fl—f = Zf//j: = dTlﬂF{‘dt = |TT:,/((Z))|
Curvature (not a vector, but a scalar) | & = ‘%f = ’1(117://5; = |d:|i7/‘dt‘ = E,/ ((tt))ll
Principal unit normal vector N %d—f = IZ?;Z; == Igiggl
Radius of curvature p 1/k
Center of curvature 7(P) + p(P)N(P)
Binormal vector B Tx N
Torsion T | £ "Z—f (you have to pick the sign) or fi—f N
Tangential Component of acceleration | ar a-T= %W |
Normal Component of acceleration | ay a-N=x (%)2 = k|v]?

7.4.1 The unit tangent vector T

The velocity 7 (t) = ¥(t) gives us the tangential direction of motion. Division by

the magnitude gives the unit vector (called the unit tangent vector) T = % =

I%\ Alternatively, if the curve is parametrized by arc length, then the speed
is already 1, so the unit tangent vector is also T = g—i = ‘;—f% = F’(t)ﬁ/d75 =

= ol

1 _ T
7O wm = T

7.4.2 If a vector valued function has constant length, then
its derivative is orthogonal to the function.

First note that the product rule works for vector valued functions when consid-
ering the dot or cross product of two space curves (in general mathematicians
define operations as products if those operations obey the product rule for
derivatives). If the length of a vector is always constant, i.e. |7(t)| = ¢, then
square both sides to obtain |r(t)|? = ¢2. Recall that |F]?> = 7 7, so we can write
7(t) - #(t) = ¢2. Taking derivatives of both sides (using the product rule) gives
7(t) - 7 (t) + 7 (t) - 7(t) = 0, or simplifying since the dot product is commutative
we have 27(t) - #(t) = 0. Divide both sides by 2 to obtain 7(¢) - ¥(¢) = 0,
which means that 7(¢) and #(¢) are orthogonal. So vector valued functions with
constant length have an orthogonal derivative. One way of visualizing this result
is to realize that if the length of the position vector is never changing, then it
must trace out a path on a circle (in 2D) or a sphere (in 3D). Then notice that
on circles and spheres, tangent lines and tangent planes are always normal to a
vector from the center to the point of tangency.
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7.4.3 Curvature « and the Principal Unit Normal Vector
N

The unit tangent vector T gives us the tangential direction of motion. The
derivative of the unit tangential vector tells us how the direction of motion is
changing. Since the unit tangent vector always has length one, its derivative is

normal to the tangential direction. Curvature is a measure of the rate of change
of the unit tangent vector per unit length. The curvature vector K = % points
in a direction normal to 7. The magnitude of the curvature vector is called
FAk

the curvature, and written k = The unit vector in the direction of the

curvature vector is called the principal unit normal vector, and written N. As
reparametrizing by arc length can be difficult, it is convenient to give formulas
for curvature that can be computed from a given parametrization. The formulas
are listed at the beginning of this section.

7.4.4 Circle of curvature (osculating circle)

The circle of curvature at a point P on a curve where the curvature is nonzero
is a circle in the plane containing the unit tangent and principle unit normal
vectors which is tangent to the curve at P, has the same curvature as the curve
at P, and whose center lies in the direction of the principal unit normal (i.e. the
center is 7+ pN ). This circle is the best approximating circle to the curve at P.
The radius of the circle is p = % Note that the curvature of a circle of radius
p=ais k = 1/a. The center of the circle of curvature is called the center of
curvature.

7.4.5 The Binormal vector 5 and Torsion 7

The binormal vector is B = T x N. Notice that B is already a unit vector. The
binormal vector provides the z axis for describing the world from the viewpoint
of an object in motion where the x and y axes are given by the T and N
directions, respectively.

4B _ dB/dt
ds T ds/dt
as you move along a curve (or how quickly the object is twisting). Since

B is constant length, the derivative % is orthogonal to B. The following

The derivative measures how quickly the binormal vector changes

computations show that ?T]f is also orthogonal to T , which means that U}T?
d(TxN)
ds -

T x % + ‘fi—f x N =T x % + 0 The last 0 comes because ‘g is parallel to

N , and the cross product of parallel vectors is the zero vector. We see from

this computation that % =T x %, which means that ‘3—? is orthogonal to

T. Since [il—]f is orthogonal to both B and f, it must be a scalar multiple of

must be parallel to N. We compute (using the product rule) % =

N. Torsion 7 is the opposite of the scalar component of dd—f in the direction of
]\7, ie. 7= —% . N. Torsion is a measure of the rate at which acceleration is
causing an object to rotate out of the plane containing T and N. Objects which
are spiraling clockwise (as seen from behind the object) around some axis have

positive torsion. Spiraling counterclockwise results in negative torsion. If you
wrap your hand around the T vector in the direction of %, then a clockwise

rotation has your thumb point in the T direction. This is the reason for the
choice of sign.



CHAPTER 7. MOTION 64

7.4.6 Tangential and Normal Components of acceleration

We now decompose the acceleration into tangential and normal components.
The scalar component of acceleration in the tangential direction is called the
Tangential Component of Acceleration ap, and the scalar component of accelera-
tion in the normal direction is called the Normal Component of Acceleration ar.

These can be computed using projections, namely ar = compsd = IqTil =aqa- T
and ay = compgyd = % =a-N. Alternatively, we can write velocity as

—

magnitude times direction, ¥ = |0|T, and then compute (using the product rule)

v d - -
i=2 == (1T) 7= 8T

_d d
C';‘ T+ |7 use the product rule
d d 4T

= c|l1t}‘ T + |7)? d|t_‘| multiply and divide by ||
I P d 2T

= T 4 |52k R= T =4t
g L IR e T
d|v] -
C';"T+|~|2 R=rN

From this computation we know that acceleration is in the plane formed by the
tangential and principal unit normal vectors. Since ap = Jﬁl, the tangential
component of acceleration is positive if you are speeding up and negative if you
are slowing down. The normal component of acceleration ay = |]%x grows and
shrinks much more quickly with changes in speed than it does with changes in the
curvature. Doubling the speed will cause the normal component of acceleration
to quadruple. This is the reason that when you are driving on a mountain
switchback and encounter a sharp turn, you see a posted speed limit of 15 miles.
By dropping your speed from 45 miles per hour to 15, you reduce the normal
component of acceleration by a factor of 9 (thus helping you from falling of the
roads edge).

There are many other formulas for computing ar and ay. You don’t need to
memorize them, rather you should be able to derive them. Following are useful
formulas for doing basic computations. Modern technology makes doing the
computations in all cases simple, regardless of the formula. You should know
how to derive these formulas given the hints I provide: anx = +/|a|? — a3 (this
is very useful for computing ay, just draw the vectors and use the| Pytthorean
U Xd

theorem), ay = @ - N (the hard part here is computing N ), k= W (write
0]

7 and @ in terms of T and N, compute |7 x @ by distributing the cross product,
and then solve for k).

7.4.7 An Example

We will compute the quantities above for the helix 7(t) = (cost,sint,t). 9(t) =
7(t) = (—sint,cost, 1> and speed = |7(t)| = V2, f() = 7@)/|7 @) =
% (—sint, cost, 1), dT'/dt = \f< cost, —sint,0), & = dT'/ds = 1 (—cost, —sint,0),
k= |R| = 3, so r= 2, N = &/k = (—cost,—sint,0), the center of curva-
ture is at 7 +pN = (cost,sint,t) —i— 2 (—cost, —sint, 0) (— cost —sint,t),
B= f (sint, —cost, 1), dB/dt = f (cost,sint,0), dB/ds = 3 (cost,sint, 0),

T = —%(cost,sint,@ (—cost,—sint,0) = %, ar = 0, ay = 1. In general
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you should not expect to find that k, p, 7, a7, ay are integers, but rather some
complex function of ¢t. Even for parabolas, these formulas get messy really
soon. Do a few problems from the text to make sure you understand how the
computations proceed, but spend a majority of your time making sure you can
prove the relationships found between the vectors.



Chapter 8

Line Integrals

After completing this chapter, you should be able to do the following;:

1. Describe how to integrate a function along a curve. Use line integrals to

find the area of a sheet of metal with height z = f(x,y) above a curve
7(t) = (x,) and the average value of a function along a curve.

. Compute work and flux of vector fields along and across piecewise smooth
curves. Note that flow and circulation along curves are equivalent to
finding work along a curve.

. Find the following geometric properties of a curve: centroid, mass, center
of mass, moments of mass, moments of inertia, and radii of gyration.

. Be able to draw vector fields, determine if a field is a gradient field (hence
conservative), and use the fundamental theorem of line integrals to simplify

work calculations.

8.1 Preparation and Homework Suggestions

Preparation Problems (11th ed) Preparation Problems (12th ed)
Day 1 | 16.1:1-8 (matching) 16.1:13 16.2:7  16.2:13 Day 1 | 16.1:1-8 (matching) 16.1:13 16.2:7  16.2:19
Day 2 | 16.1:24 16.2:17  16.2:25  16.2:37 Day 2 | 16.1:34 16.2:23  16.2:31  16.2:47
Day 3 | Handout 1 3 5 6 Day 3 Handout 1 3 5 6
Day 4 | 16.3:5 16.3:15 16.3:21 16.3:26 Day 4 | 16.3:5 16.3:15  16.3:21 16.3:26
Here is the homework which lines up with the text.
Topic (11th ed.) Sec | Basic Practice Good Problems Thy/App | Comp
Line integrals 16.1 | 1-8, 9-22, 23-32 33-36
Work, Flow, Circulation, Flux | 16.2 | 7-16, 25-28, 37-40 | 17-24, 29-30, 41-44 | 45-46 47-52
Gradient Fields 16.2 | 1-6
Gradient Fields 145 | 1-8
Potentials 16.3 | 1-12,13-24 25-33 34-38

66
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Topic (12th ed.) Sec | Basic Practice Good Problems Thy/App | Comp
Line integrals 16.1 | 1-8, 9-26, 33-42 27-32 43-46
Work, Flow, Circulation, Flux | 16.2 | 7-12, 19-24, 31-36, 47-50 | 13-18, 25-30, 37-38, | 51-54 55-60
Gradient Fields 16.2 | 1-6

Gradient Fields 14.5 | 1-10

Potentials 16.3 | 1-12,13-24 25-33 34-38

8.2 Line Integrals

The integral fab f(z)dx is an integral in the plane of a function y = f(z) over
the interval (a,b). This integral gives the area of the region above the interval
(assuming f > 0). A little piece of area dA is width da times height f, so area
can be computed using the integral A = [dA = fab fdx. We now generalize this
to integration along a curve.

To find the area of a metal sheet that has height z = f(x,y) over a curve
7(t) = (x(t),y(t)), we approximate the area by breaking the curve up into little
pieces of length ds. The height along a very small portion of the sheet can
be assumed to be constant and is approximated by f. A small piece of area
dA is approximately height times width, or f ds. To find the total area, we
sum the approximate areas A = > dA = fds. As the small pieces ds of arc
length approaches zero, we obtain the integral formula A = [ dA = fc fds =

f flr' (t)|dt, recall that ds = |r'|dt = speed X d(time). This is called a line
integral. You parametrlze a curve C, and then compute the integral using
the formula fc fds = f f|r'(t)|dt. This formula extends to all dimensions.
It is an extension of integrating along an interval. Line integrals are used to
find work done by a non constant force to move an object along an arbitrary
path. Work leads to the concepts of flow, circulation, and flux, and is central in
understanding how energy is used to generate power.

Example: The area of a sheet of metal above the curve 7(t) =
<t t2> for —1 <t < 2, with height given by f=(xz+2)(y+2),i
P2+ 2) (% + 2)/(1)% + (20)2dt = t+2)(t2+2)\/mdt.
Solvmg this integral is rather time consummg, and technology will
quickly get an answer. Please spend some time sharpening your
\ integration skills (in particular « substitution and integration by
parts), but do not spend so much time doing complex integrals that you do not
get to practice the new ideas. Most of the solutions I have online just setup an
integral.

8.3 Work

If a constant force F acts on an object through a displacement in a straight
line, then work is W = F.7 (we use the dot product). If the displacement
is not linear or the force is not constant, then this formula breaks down. To
find work done by a non constant force F along an arbitrary curve 7, start by
breaking the curve up into little pieces dr = Tds (direction times magnitude,
where T is the unit tangent vector). On each little piece of the curve, the
force is approximately constant, and the displacement is approximately in a
stralght line, so we approximate the work done on each little piece as dW =

F.dr = F-Tds. Sum the little pieces of work to get an approximate total work
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W ~ Zﬁ - Tds. Taking limits gives the integral formula W = fc F.Tds =

fabﬁ : |T;,||f"|dt = be;‘ 7dt = [, F-dr. We use the differential notation

dr = 7dt, which comes from the equation ((11: =7 (just multiply both sides by

dt). If F = (M, N, P) for some functions M, N, and P, then the work can be
written W = [ (M, N, P) - (dz,dy,dz) = [, Mdx + Ndy + Pdz. These many
formulas are different ways of representing the exact same quantity. It is common
to represent vector fields using the notation F = (M,N, P) or F = (P,Q, R),
depending on the book.

8.3.1 Flow (synonym for work) and Circulation (work on
a closed curve)

Flow along a curve C' is a measure of how much fluid (with velocity field
F = (M, N, P)) flows along a curve C : 7(t),a < t < b per unit time. This
quantity is particularly useful in the study of fluid mechanics, and studying how
air flow near a wing provides lift for an alrplane The component of the velocity
in the direction of the curve is compz ~F = F . T. For each little piece of curve

ds, the product F.Tds is approximately how much fluid will flow across this
portion of the curve. Summing these small bits of flow gives the total flow by
the line integral [, F.Tds = Jo F.dr= Jo Mdx + Ndy + Pdz. If the curve is
a simple closed curve (meaning it is piecewise smooth, starts and ends at the
same point, and does not cross itself), and is oriented in the counterclockwise
direction, then flow along C' is called circulation around C', and we add a closed
circle to the integral as in fo Fdr. The only difference between work, flow, and
circulation is how we interpret the vector field, the computations are the same.
A vector field is said to be conservative if circulation along every closed loop
is zero, or equivalently if work calculations are independent of the path, and
only depend on initial and starting point.

Example: Consider the vector field F"(:r, y) = (—y,x).
The circulation of F along a circle or radius a is found
by first parametrizing the circle C' : r(t) = (acost,asint).
Hence #(t) = (—asint acost) and fc F.dr = 0271' (—y,x) -
(—asint,acost) dt = fo —asint,acost) - (—asint,acost)dt =
fo a?sin®t + a? cos? tdt = fo% a’dt = 2wa?. Notice that the inte-
gral of a constant along an interval is always the length of the interval multiplied
by that constant. This will speed up the calculation of many integrals that we
encounter throughout the semester.

Example: Now consider the vector field F(z,y) = (z,y). To
calculate the circulation of F along a circle or radius a, we use the
same parametrization as last time. This time using the formula
fC Mdx + Ndy, we have x = acost,y = asint,dr = —asint,dy =
acost, M = x = acost, N = y = asint SO fCde + Ndy =
fo acost(—asint) + asint(acost)dt = [ 0dt = 0. Notice that
the vector field is always orthogonal to the unit tangent vector, which is why
the flow along C'is zero.

Example: Now consider the vector field F(z,y) = (—y, ) and
the curve which forms the boundary of the triangle with vertices
(0,0), (1,0),(0,1). To find the work done by F through the displace-
ment along C (or the flow along C, or the circulation around C),
we first have to parametrize the curve. This is a piecewise smooth
i T curve and as such is parametrized using 3 different curves. From

(0,0) (1 0), we get a direction vector for the line segment by subtracting the
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points, (1 —0,0— 0). We then write Cy : 7
(we know to stop at 1, because 71(1) = (1,0)
(1,0) to (0,1), we write Cs : 7(t) = (—1 1)
segment from (0,1) to (0,0), we write Cs : 73(t)
We then compute

(t) = (1,00t +(0,0) for 0 <t <1
). Similarly for the segment from
t+ (1,0) for 0 <t < 1. For the
=(0,—1)t+(0,1) for 0 < ¢ < 1.

$o F - di =Je, F-dry +le, F dfg +o, P dFB
= [y (~y.2)- (1,0)dt +f0 y,x) - (—1,1)dt +f0 y,x) (0, —1) dt
= 01<—(0),(t+0)>~<170>dt +f0 t+0) (1—1t))-(=1,1)dt +f0 l—t 0) (0, —1) dt
= [ 0dt [+ 0) + (1 t)dt + [} 0dt
=0 +1 +0
=1

8.4 Flux across a smooth curve

Any simple closed curve (meaning the curve is piecewise smooth, doesn’t cross
itself, and starts and ends at the same point) divides the plane into two regions,
which we will call the inside and outside of the curve. While flow is a measure of
the rate of fluid flow along a curve, flux is a measure of fluid flow across a simple
closed curve (a normal vector to the curve will be needed). If fluid is flowing
out of region, then there is positive flux across the curve which is the boundary
of the region. If you were to turn on a faucet at the origin and let water flow
onto the plane, the water would flow outwards, and the flux would be positive
across any curve which contained the origin in its interior. Alternatively, if you
placed the drain of a sink at the origin, then water would flow into any region
containing the origin and flux across a curve containing the origin in its interior
would be negative.

If 77 is an outward pointing unit vector, then F i is the component of Fin
the outward normal direction. Break up the curve into small bits of curve ds, and
then dFlux = F - fids is the small amount of fluid which flows across each small
bit ds of curve. If (dx, dy) represents the tangential direction, then (dy, —dx)
gives the direction of the outward pointing normal (the dot product with the
tangential vector is zero, and the vector points outward). A unit outward normal

vector is hence ~%:=92)_ For flux across a curve C, we add up the small bits
\/ dy?+dx? ’

of flux and take limits to get the formula Flux = [, dFluz = [, F . iids =

[ F- \/‘?y’zﬁ\/ da? + dy? = [, (M,N)- < dy,—dz >= [, Mdy — Ndx.

Example: Consider the vector field F(z,y) = (—y,z). The flux
of F across a circle or radius a is found by first parametrizing the
circle C' : r(t) = (acost,asint). Hence 7(t) = (—asint,acost), or
dxr = —asint and dy = acost. Hence we have fc Mdy — Ndx =
fo —asint)(acost) — (acost)(—asint)dt = 027r 0dt = 0. Notice that
this spin field is always orthogonal to the outward normal. This should
visually show that the flux is zero. It is valuable to look at a picture and try
to decide if the flux is zero, positive, or negative, as this will give you some
intuition about flux.

Example: Consider the vector field F(z,y) = (z,). We use the
same parametrization as the previous examples, so * = acost,y =
asint,dr = —asint,dy = acost, M = z = acost,N = y =
asint. This gives the flux of F across C as fC Mdy — Ndx =
fo% acost(acost)—asint(—asint)dt = fo " a?(cos® t+sin® tdt = 2ma?.
You should notice that the vector ﬁeld in this instance is always point-
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ing out of the circle. Since the vector field and the outward normal are in the
same direction, the flux is positive. Fluid is moving out of th interior of the
circle.

Example: Consider the vector field f(x,y) = (zy,z +y) and
7.~ - the curve C which forms the boundary of the triangle with vertices
'/, (0,0),(1,0),(0,1). We first parametrize C' by finding a parametrization
for each curve. This already done above, and we had the three curves
Cy:7(t) = (1,00t +(0,0) for 0 <t <1, Co:7a(t)=(=1,1)¢t+ (1,0)

Yor'0 <t<1,and Cs:73(t) = (0,—1)t+ (0,1) for 0 < ¢ < 1. We then compute
the flux of F across C as

$o Mdy — Nda =fc 0)—( +y)M)dt + o, (xy)(1) = (z +y)(-1)dt

—fo (t+0)d F LA 00) + (1 —t) + (t)dt
= [} —tdt [t -1+ 1dt
=—3 +3-14+1

3

8.5 Physical Applications

We now develop average value, centroid, mass, center of mass, moment of inertia,
and radius of gyration. There are examples at the end of this section of how to
do all of this, as well as a “Short Version” at the beginning which summarizes
the ideas found herein. I have an alternate version of the material below which
goes into more details about how the ideas are calculated. If you are going to
graduate school, and want to spend a little more time with the theory, send me
an email and I will provide you with the other handout.

8.5.1 The Short Version

Essentially in this learning module you are learning to use and derive differential
formulas to find quantities such as area, centroid, mass, center of mass, moment
of mass, moment of inertia, radii of gyration, work, and flux. The following
formulas summarize the entire learning unit.

e Area: dA = fdzx, fds

e Average Value: (AV)s = [ fds

e Mass: dm = dds

e Centroid: (7,7,2)s = [ (x,y, 2) ds (find average z,y, z values)

e Center of Mass: Replace s with m in centroid, (Z,y, z) m = fc (z,y, z) dm,
where M. = [, Zdm = [xzdm is a first moment of mass.

e [ = [rad*dm is a moment of inertia, and [ R?dm = [rad*dm gives
R?>m =1 or R = \/I/m as the radius of gyration (where rad represents
the generic distance from a point in space to the axis of rotation).

e Work: dWork = F - Tds = F - d7 = Mdz + Ndy(in 2D) = Mdx 4+ Ndy +
Pdz(in 3D) where T is a unit tangent vector to C.

e Flux: dFlux = F - itds = M dy — Ndz where 7 is a unit normal vector to

C.

e Fundamental Theorem of calculus: Change in f from a to bis f(b)— f(a) =

[df = [ Laz = [° f'(x)da

+fc ry)(—1) —
+k )(1 —t)(
+Jy Odt

+0

(N)(0)dt
(—1)dt
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e Fundamental Theorem of Line integrals: Change in f from A to B along C
. b b= 7 = N
is f(B) ~ f(A) = [odf = [ $ds = [, {hids = [V f -Gt = [ F-dr.

I strongly suggest that you start each problem from a differential formula (one
involving dx, dy, ds, or dm), and then work from there to convert it to a line
integral in terms of ¢ that you can evaluate. If you do this, you will eventually
internalize each formula and know where each formula comes from.

8.5.2 A more detailed version

Average Value - how do you average infinitely many things:

Recall from first semester calculus the average value of a function formula
given by f = ;& f; f(z)dz, or f(b—a)= f; fdx. This formula gives us a way
of averaging together infinitely many values. The area underneath f from a to
b is given by f; f(x)dz. Average value is the height f of a rectangle from a to b
which has the same area as the area under f from a to b. Average value can be
though of as follows: if we were to replace f by a constant f , what should f

equal so that f; fdx = fab fdx. Since f is a constant, the left integral becomes

f(b— a) and we then obtain the formula f = ;- f; f(z)dx.

To get a visual picture of what average value does, imagine for a moment
that you have an ant farm in front of you. The top of the sand in the ant farm
will be our function f, and the left and right sides of the ant farm will be a
and b. Now shake the ant farm so that the sand levels off. The height of the
sand when you were done shaking would be the average value. Notice that high
points are made low, and low points are made high.

Average value for curves is essentially the same idea. The average value of a
function f along a curve C is the constant f so that fC fds = fc fds. The left
integral becomes f | ¢ ds = f s where s is the arc length of the curve. We divide
by s to obtain the formula f = %fc f ds. Average value can be used to find
average temperatures, average stock prices, and in the ideas that follow average
value gives us formulas for centroids, center of mass, and other geometrical
values which are crucial in a study of energy.

Density and Mass: A density is the measure of a quantity per unit
something. The derivative % is a measure of change in y per unit change
in . A change dy of a function for some given change dz is computed by
multiplying the density % by the change dx, giving us the familiar equation
dy = %dx. Adding up these approximate changes in y gives the integral formula

fab dy = f; f'dz which measures the total change in y from a to b (which is
called the fundamental theorem of calculus). Hopefully this was a review. The
new idea is that density is the measure of a quantity per unit something.

Mass density d(z,y,y) in space is a measure of mass per unit volume, i.e
density = 25— The (mass) density of water is found by calculating the
mass of some quantity of water, and dividing by its volume. The metric unit
system was created so that 1 kg of water occupies 1 liter of space, giving a
density of 1kg/L. If you mix oil and water, the density of oil is less than water
which is why the oil and water separate themselves with the oil on top and the
water underneath. Different substances have different densities. When an object
is made out of many different materials, the density of the object may differ
depending on where in the object you are. This is why we write 6(z,y, z), to
reinforce the idea that density may vary based upon which portion of the object
you are considering. If the density of an object is constant, to find the mass we
just multiply the density by its volume.

If we consider an object that is located in space along curve C : 7(t) =
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(x,y,2)) for a <t < b, then it is more convenient to think of density as mass
per unit arc length. This gives us a density d(z,y, z) at each point on the curve,
and then the mass of each little portion of the curve can then be found by
multiplying the density by the length of each little piece. In other words, if ds is
a little length of curve with density §, then a little piece of mass is approximately
dm = dds. Total mass of an object along this curve can be found by adding up
little bits of mass, giving m = [ dm = [ dds.

Centroid: The centroid (Z, 7, Z) of an object is the point in space whose
x,y, z-values are the average x,y, 2-values (where we assume the density is
constant). The average value formula gives T = %fc xds,y = %fc yds,z =
1 [, zds, or in vector form we write (Z,7,2) = 1 [ (z,y,2) ds.

Center of Mass: If the density of an object varies, then the heavier parts
should contribute more to the average value than the lighter parts. This is
accomplished by replacing s and ds with m and dm in the centroid formula. The
center of mass of an object is (z,7,2) = L [, (z,y,2)dm = L [ (z,y,z)dm.

First Moments of mass: The quantities M,. = [, zdm,M,. = [, ydm,
and My, = fc zdm which appear in the formula for center of mass are called
the first moments of mass about the yz plane, about the zz plane, and about
the zy plane, respectively. The moment of a point with mas m about a plane is
the product of its distance from the plane and its mass. The moment integration
formulas are just a sum of moments about a plane. To find the first moment of
an object about the plane z = ¢, the distance to the plane x = c is « — ¢, so the
moment is M,—. = [ (x —¢)dm (times the distance 2 — ¢ by the mass dm). The
center of mass is the value Z such that the moment about the plane x = Z is zero,
or [,(x —Z)dm = 0. Since T is a constant, this becomes 0 = [ sdm — T [, dm
or xm = fxdm = My, = Mp—g. Center of mass can be written in terms of
moments by the formulas z = M,./m,§ = My,/m,zZ = M,,/m. There are
various applications of moments in statistics, physics, and mathematics, however
the language used in each field is slightly different. Wikipedia has a wealth of
information about this topic.

Moments of Inertia (second moments): Kinetic energy of a moving

1
object is KE = —muv?, where m is the mass and v is the velocity. A particle

moving rotationally about some axis with radius r, has position function r6.
The velocity is v = (r@) = rdt = rw, where w is rotational velocity. The

1
kinetic energy of a rotating particle is thus KF = §m(rw)2 = imr2 2. Since

an object which is rotating has particles at different radii, we divide the object
into little pieces with mass Am and rotate each little piece around the axis of

1 1
rotation, giving AKFE = §Amr2w2. Summing gives us KFE ~ Z §Am7“2w2 =

1 1
§w2 Z r?Am. Taking a limit gives KE = §w2 /TQdm, where r is the radius

of rotation. The quantity I = [r?dm is called a moment of inertia about an
axis of rotation (or a second moment). We can then write kinetic energy as
KE = 711 m = fwzf. Notice that a moment of inertia takes the place of mass
in rotatlonal kmetic energy.

In 3D, the radius of rotation about an axis is the distance to the axis. About
the z-axis the radius of rotation is /y2 + 22, about the y-axis the radius of
rotation is v/z2 + 22, and about the z-axis the radius of rotation is \/x2 + y2
(you just leave off  when finding distance to = axis, leave off y when finding
distance to y-axis, and leave off z when finding distance to z axis). This gives
the formulas for the moments of inertia for a curve C with density § to be

I = [ (y*+2*)dds, I, = [ (z*+2%)dds, and I, = [ (x*+y?)dds (we squared
each distance, hence the square roots disappear). The single formula I = f r2dm
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describes all of these formulas. You can find the moment of inertia about any
line. All you have to do is find a formula for the distance from a point on the
curve to the axis of rotation.

Radii of Gyration: The radius of gyration R about an axis is a positive
radius R such that if we replace r2 with R? in the moment of inertia equation,
we would have [ R*dm = [r?dm. This means R?m = I or R = \/I/m. The

radius of gyration about the z-axis is R, = \/I;/m, and similarly R, = /I,/m
and R, = \/I,/m. The radius of gyration about an axis is a rotational center
of mass. It is used in studying energy, and is often used to simplify complex
problems. Center of mass was found similarly, where we replaced = with = to
obtain the equality [ Zdm = [xdm or z = [ xdm/m.

8.5.3 Examples

Here an example of each idea with a single curve. When you create your lesson
plan, I suggest that you focus on one particular space curve, density, and function.
Then show how all the formulas are developed from there. The point to the
next page is to show you how each formula is put together from the basic pieces
x,y, z,ds,d, and dm.

Consider the elliptical helix C : 7(t) = (3sint, 4 cost,t) for 0 <t < 2w. The
arc length differential is

ds = |7 (t)|dt = \/(3cost)? + (—4sint)2 + 12dt = V9cos2t + 16sin? ¢ + 1dt.
Arc length is then

27
s:/ds: \/96052t+1651n2t+1dt.
c 0

The centroid of this curve is found using the integral formulas (which are too
ugly to bother solving by hand). One example is

_ 1 Jo yds fo% (4cost)V/9cos? t + 16sin’ t + 1dt
y== /d - ds 27 )
$ fc S fo \/90082t+1681n t+ 1dt

. If the curve represents a wire in space with density given by §(x,y, 2) = 22+y?2
kg/L, then dm = dds and we can calculate the centroid by replace ds with

dm = 5ds) We get the formulas m = [dm = [,dds = fo ((3sint)? +
(4cost)2(t))V/9cos? t 4+ 16sin® t + 1dt and

Jdm [, dds fo ((3sint)? + (4cost)?( \/9(3082t+1681n t+ 1dt

1 / [ydm [, ydds fo (4cost)((3sint)? + (4cost)2(t))v/9cos? t + 16sin’ t + 1dt
y = — = =
m

The first moments of mass about the zz plane is the numerator of the previous
formula. The moment of inertia about the x axis is

2
I, = /mdem = /y2+z2dm = / [(4cost)?+(1)?]((3sint)*+(4cost)? \/9 cos?t + 16sin® ¢ + 1dt
0
with radius of gyration R, = +/I,/m.

8.6 Gradients, Potentials, and the Fundamental
Theorem

When the output dimension of a function is one, such as f : R® — R!, then the
derivative in vector form is called the gradient and written Vf = (f,, fy, f2). Ifa
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vector field F' = (M, N, P) is the gradient of some function f (so that Vf = F),
then we say that the vector field Fisa gradient field, and the function f is
called a potential for F. The potential of a vector fields appears in differential
equations, engineering, physics, and probably many other places of which I am
not aware.

“Test for a gradlent field”: If a vector field is a gradient field (meaning
there is an f with Vf = F ), and the potential f is twice continuously differen-
tiable, then the second order mixed partial derivatives must be equal, namely
foy = fyzs for = foe and fy, = foy. So if F = (M, N, P) is a gradient field, then
since M = f,,N = f,, P = f, we must have M, = N, M, = P,, N, = P,. If
these partial derivatives do not agree, then the vector field cannot be a gradient
field. It can be shown that if a vector field is continuously differentiable on the
entire plane, then M, = N, M, = P,, N, = P, implies that Fisa gradient
field. This gives us a way of checking if a vector field is a gradient field.

Differential Forms (exact forms correspond to gradient fields): A
differential form is an expression of the form Mdzx + Ndy + Pdz (the thing that
shows up in our work and flux integrals). The differential of a function f(z,y, z)

dx
is the expression df = D fdr = [fw fy fz] dy | = fedx + fydy + f.dz. If a
dz
differential form is the differential of a function f, then the differential form is
said to be exact. The function f is called a potential for the differential form.
Notice that Mdz+ Ndy+ Pdz is exact if and only if F = (M, N, P) is a gradient
field. The differential form zdxr 4+ zdy + ydz is exact because the potential
f = 22/2 + yz satisfies d(2?/2 + y2) = xdx + zdy + ydz, or Vf = (z,y, 2).
Notice that M, =0= N;,M, =0 = FP,, N, =1 = P,. The differential form
—ydx + zdy is not exact because M, = —1 is not equal to N, = 1.

Finding a potential (undomg a total derivative): To find a potential,
we simultaneously solve the differential equations f, = M, f, = N, and f, =
P. We have to find a function f which is a solution of all three integrals
J Mdx, [ Ndy, and [ Pdz. Essentially, we have to learn how to undo finding
the total derivative. The following examples illustrate two method of doing so.
The first method matches the book, the second is quicker route which simplifies
the general idea.

Method 1: Consider the vector field F' = <2;vy +x,2% — 3z, —3y+ z >

Since My = 2x = N,,M, =0 = P,, and N, = -3 = P,, the field F has a
potentlal First integrate [ Mdz to get [2zy+ xdx = 2%y +2?/2+ A(y, 2) = f,
where A is a constant with respect to x, which means that A may actually
be a function of y and z. Then differentiate with respect to y to obtain
fy = %[mzy +22/2 + A(y,2)] = 2* + Ay(y,z). Since N = f,, we have
x? — 3z = 2% + Ay(y,2), or Ay(y,z) = —3z. Now integrate A, with respect
to y to obtain A(y,z) = [ —3zdy = —3yz + B(z), where B is a constant with
respect to y, which means that B may actually be a function of z. The partial
derivative 2 [—3yz + B( )] = —3y + B.(z) should equal P = —3y, so we have
—3y+B,(z ) = —3y+22, or B,(z) = z2. Integration yields B = [ 2%dz = 23 /3+C
for some constant C. Hence a potential is f = 2%y + x2/2 — 3yz + 22/3 + C for
any constant C.

Method 2: As an alternative approach, integrate all three functions simulta-
neously, ignoring the constants, to get [ Mdz = 2?y+12?/2, [ Ndy = z?y+—3yz,
and dez = —3yz + 2°/3. Provided a potential exists, then the function f
is formed by summing these integrals, ignoring duplicated terms. Since x%y
and —3yz appear in multiple integrals (are duplicated terms), we include them
once in the sum to obtain for a potential f = 2%y + x2/2 — 3yz + 23/3. This



CHAPTER 8. LINE INTEGRALS (0]

method will work if a potential ex1sts It is easy to check that f is a potential
by computing Vf = <2xy +z,22 -3z, -3y+ 2 > which should equal F.

Method 2 - second example: As another example, consider the vector
field

~ 1
F(z,y,z) = <J;y—|—yz—|—1,2x2—|—xz—3z,xy—3y>.

The test for a conservative vector fields shows My, =+ 2 = Ny, M, =y =

P,,N, =z — 3 = P,, which means F is conservative. A potential is found by
integrating

1 1 1
/:Ey+yz+1dx = §x2y+xyz—|—x, / 5:62+xz—3zdy = §x2y+xyz—3yz,/xy—3ydz = xryz—3y=z.

The term zyz appears in all three, %ny appears in the first and second, and
—3yz appears in the last two. A potential is found by summing the terms (not
repeating duplicates) to obtain f(z,y,z) = 32y + ayz + = — 3yz.

When using the second approach, any time a term contains more than
one variable, that term will appear in more than one integral. For the vector
field F = (yz,xz,yz), the integral [ Mdz = zyz contains z,y, and z, so the
integral with respect to y and z must also contain this term. We compute
| Ndy = zyz, [ Pdz = y22/2, and notice that the same term appears in the
y integral, but not in the z integral. Because [ Mdz = xyz contains all three
variables but does not appear as a term in the third integral, we should be able
to show using the “test for a conservative vector field” that there is no potential.
Notice that P, = 0 and M, = y are not equal, which means that F is not a
gradient field. To prove a vector field does not have a potential, you must show
that either M, # Ny, M, # Py, or N, # P,. It is insufficient to say “There is
no potential because I could not find one.”

8.6.1 The Fundamental Theorem of Line Integrals - Why
potentials are useful

When a vector field is a gradient field, there is a simple way to compute the work
done by F along a curve 7(t),a <t < b. First find a potential f for F meaning
F = V. Let A = 7(a) be your starting point and 7(b) be your ending point. The
work done is simply the difference in the potential from A to B, or integral form
we write W = [dW = [V F-#(t)dt = [, Mdz + Ndy+ Pdz = f(B) - f(A). In
other words, when a vector fields is conservative the work done is the difference
in the potential. The reason for the word “potential” has to do precisely with
the fact that differences in potential convert “potential energy” to work (another
measure of energy). When a vector field has a potential, work done depends
only on the initial and terminal point, not on the path chosen and we say that
work done is independent of path.

Conservative Vector Field: If work done by a vector field F is indepen-
dent of the path of motion, we say that F'is a conservative vector field. If F is
a gradient field, then it is conservative. The converse is true under appropriate
conditions. Notice that if the start and end points are the same, then the work
done by a conservative vector field is 0.

Example: Let F= (x +y,z +y) and C is the upper semicircular curve in
the plane starting at (1,0) and ending at (—1,0), followed by the straight line
segment from (—1,0) to (0,0). A potential for Fis flz,y) = %x2 + zy + %yz.
The flow of F along C' is Jo F.dr= f(0,0) = f(1,0) = —3 by the fundamental
theorem of line integrals. Without the fundamental theorem of line integrals,
we write 71 (t) = (cost,sint),0 <t < 7 and r(t) = (¢,0),—1 < ¢ < 0, and then
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instead compute [, F.dF = Jy (cost +sint,cost + sint) - (—sint,cost) dt +
fi)l (t+0,t+0)-(1,0)dt =0— 3 as well.

The remainder of this document deals with explaining exactly why the
fundamental theorem of line integrals works. Essentially it is an extension of
the fundamental theorem of calculus. Since we will be seeing this theorem again
in multiple different ways throughout the course, I have included the following
in our lecture notes.

Change Density and the Fundamental Theorem of Calculus

The derivative of f is a density which measures change in f per unit length (so we

could say the derivative is a ”change density”). We erte =~ % = W

The Fundamental Theorem of Calculus f(b) — f(a) = fa f’ dx says that you can

find the total change in a function f(b) — f(a) by adding up little changes dy
which are the change density f’ times length dx.

Begin by breaking the interval [a, b] up into little pieces a = zp < 1 < T3 <

- < Tp_1 < xp = b of width Az; = z; — x;—;. The total change f(b) — f(a)

in f is calculated by adding up little changes Ay, = f(z;) — f(x;—1). If we

multiply and divide by Ax;, then each little change is Ay; = %Ami =

Ay‘Azz ~ %Am, which is approximately the density % times a length dzx.
The mean value theorem is the theoretical tool which allows us to remove the
approximately equal and write Ay’ L A, = (cz)Aazl for some ¢; between z;_1
and x;. Summing the approx1mate changes and taking a limit as Ax; — 0 gives
the fundamental theorem of calculus. Notationally, this is all summarized as

J(b) = f(a) = f(b) = f(xn-1) + f(xn_1) = f(Tn- 2) cod flae) = flor) + f2r) — f2a)
x;) — fmi Ay; d
:Zf(mz)— (zi-1) Zf 1)Axi:Z<Azi) ZNZ yAl‘l

Taking limits gives us f(b) f f'(x)dx, the fundamental theorem of
calculus.

Proving The Fundamental Theorem of Line Integrals

Let f(z,y,2) be a function. Let C' be a smooth space curve, parametrized by
7(t),a <t <b. Let A= 7(a) and B = 7(b) be the start and end points of the
curve. The total change in f from A to B is f(B) — f(A) = f(7(b)) — f(7(a)).
The fundamental theorem of line integrals states that

f(B)—f(A)Z/Cd(fOF)z/CVf~dF:/abe-F’dt.

The change density is a change df per unit length ds, where we use arc length
for length because motion is along a curve The change density can be written
% d(’;:r) 4t The chain rule gives d =DfDr = Vf -9 Multiplication
by ds gives df = Lds =Vf -7 dds=Vf- F’dt.

We compute total change as follows. Begin by breaking the interval [a, b]
up into little pieces a =tg < t1 <ty < --- < t,_1 <t, =0b Total change in f is
then

f(B) = f(A) = f(7(b) = f(7(tn-1)) + f(7(tn-1)) — f(F(tn—2)) + --~+f(*( 1)) = f(i(ta))
=T FR)) - F) = S A o) = S LTI S S0 )
_Z( oF))Ati:ZD(foF)(t)Ati:ZDfDFAti:ZVﬁF’Ati
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Taking limits gives us the fundamental theorem of line integrals: f(B)— f(A) =
JoVf-dr.



Chapter 9

Optimization

After completing this chapter, you should be able to do the following;:

1. Explain the properties of the gradient, its relation to level curves and level
surfaces, and how it can be used to find directional derivatives.

2. Find equations of tangent planes using the gradient and level surfaces.
Use the derivative (tangent planes) to approximate functions, and use this
in real world application problems.

3. Explain the second derivative test in terms of eigenvalues. Use the second
derivative test to optimize functions of several variables.

4. Use Lagrange multipliers to optimize a function subject to constraints.

9.1 Preparation and Homework Suggestions

Preparation Problems (11th ed) Preparation Problems (12th ed)
Day 1 | 14.5:13 14.5:17 14.6:1 14.6:13 | 14.5:15 14.5:19 14.6:1 14.6:13
Day 2 | 14.7:3 14.7:21 14.5:31-32 14.6:50a | 14.7:2 14.7:16  14.5:35-36  14.6:54a
Day 3 | 14.8:5  14.8:15 14.8:27 14.8:33 | 14.8:5  14.8:15 14.8:27 14.8:33
The following homework problems line up with the topics we will discuss in
class. Please do enough of each type of problem to master the material.
Topic (11th ed.) Sec | Basic Practice | Good Problems Thy/App Comp
Directional Derivatives and the Gradient | 14.5 | 1-22 23-32 33-36
Tangent Planes and approximation 14.6 | 1-22 23-24, 47-58, 60-63 | 59
2nd Derivative Test (use eigenvalues) 14.7 | 1-38 39-44, 49-52, 45-48, 53-64 | 65-70
Lagrange Multipliers 14.8 | 1-32 33-40 41-44 45-50
Topic (12th ed.) Sec | Basic Practice | Good Problems Thy/App Comp
Directional Derivatives and the Gradient | 14.5 | 1-24 25-36 37-40
Tangent Planes and approximation 14.6 | 1-22 23-24, 31-32, 49-62, 64-67 | 63
2nd Derivative Test (use eigenvalues) 14.7 | 1-38 39-44, 49-60, 45-48, 61-68 | 69-74
Lagrange Multipliers 14.8 | 1-32 33-40 41-44 45-50

78
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9.2 The Gradient

For a function f : R” — R with one output, the derivative D f when written
as a vector is called the gradient of f and written Vf. If C is a level curve
¢ = f(z,y) of the function f(z,y), and 7(¢) is a parametrization of the curve in
the plane, then the composition f(7(t)) equals the constant ¢. The chain rule
for derivatives then shows that DfDr = 0, or Vf -7 = 0. This means that
the gradient is orthogonal to the direction vector of a tangent line to the level
curve, i.e. the gradient is normal to level curves. The gradient of a function
f(x,y,z) is normal to level surfaces. The pictures below illustrate this idea
for several functions. The first two pictures show both a 2D and 3D plot of
the same function. The next two pictures give contour plots and gradient field
plots of two functions. The last plot is a 3D plot of several level surfaces. The
gradient vectors are normal to the level surfaces.
;\j SRS

% 5. %”
/v/v o

T
P T

f =sinxcosy f=3x+y

For a function z = f(z,y), the partial derivatives f, and f, give the slope of
the function in the z and y directions, respectively. Let @ = (u1,uz2) be a unit
vector (representing any direction), and (a,b) a point in the domain of f. The
directional derivative of f in the direction of @ at (a,b) is

flat b bt huz) = Flab) _ p e, pya = 5 f(ab) - @

Dﬁf(av b) - }Lli% h
Geometrically, the directional derivative is the slope of a tangent line to the
surface at (a,b, f(a,b)) which lies in a vertical plane containing the vector
(u1,u9,0). The intersection of this vertical plane with the surface is the space
curve 7(t) = (a+ uit,b+ uat, f(a + uit,b+ ust)), which passes through the
point (a,b, f(a,b)) at ¢ = 0. The chain rule gives the derivative of 7 at
t=0 s 7(0) = {ur, us, DF(r(0)Dr(0)) = (ur, s, fola, s + fy(a,bus) =
(u1,u2,Vf(a,b) - @). One unit increase in the @ direction gives a rise in the z
direction of V f(a,b) - @ units. Hence we see that the directional derivative is
Daf(a,b) = V/(a,b) - @

Recall the differential notation dy = f’dz from 112. This can be extended
to all dimensions as dif = D fdZ, or d(outputs) = D fd(inputs). For a function

z = f(z,y), we have dz = [fz fy} {dw

then a change in the inputs dr = w; and dy = wus gives a change in the
output dz as the directional derivative in the direction of . We again have
Dzf(a,b) = Df(a,b)d = Vf(a,b) - 4. Interpretations about the gradient come
immediately when you use the differential notation d(outputs) = D fd(inputs).

Since Dgf(a,b) = Vf(a,b) - @ = |V f(a,b)||t]| cosb for  the angle between
Vf(a,b) and i@, we see that the directional derivative is greastest when cosf =1
or § = 0. The direction of greatest increase is given by the gradient. The
direction of greatest decrease is opposite the gradient.

If @ = (uz,ue) is a unit vector,
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The function f(z,y) = 9 — 2 — y? has deriviative
Df = [-2z —2y|, ie. Vf = (—2x,—2y) The direc-
tional derivative in the @ = (1,0) direction at any point
(z,y) is Dz f(z,y) = (—2x,—2y) - (1,0) = —2x, or the
derivative in the x direction. The directional derivative
in the direction (2, 1) (which as a unit vector is % (2,1))

is Dizy f (@, y) = (=22, -2y) 75 (2,1) = J=(—4z—2y).
At the point (1,1), we have Vf(1,1) = (=2,—2) and
Dy f(1,1) = (=2, —2>.% (2,1) = —%. The direction
of greatest increase at (1,1) is in the (—2, —2) direction.
This is illustrated in the picture to the left. The zy plane
is shaded in the picture. The direction of the gradient
points back to the origin (it is a 2D vector). The direction of u points away
from the origin (hence the dot product is negative). Several level curves of f
are drawn in 3D with their height included. The space curve shown is a curve
in the surface. A tangent vector to that curve is also drawn. The change in
height of that tangent vector is the directional derivative, as the change in the
zy direction is 1 unit.

9.3 Tangent planes and Approximation

Since the gradient is normal to level surfaces, the gradient V f(z,y, z) of function
f(z,y, z) can be used to find the tangent plane to level surfaces. For example,
the hyperboloid of one sheet 1 = 22 4+ 32 — 22 is the level surface f = 1 of
the function f = 22 + y? — 22, The point (1,—2,2) is on this hyperboloid,
so the gradient Vf(z,y,2) = (2z,2y, —22) evaluated at (1,—2,2) gives the
vector Vf(1,-2,2) = (2,—4,—4), which is a normal vector for the tangent
plane to the hyperboloid at (1,—2,2). An equation of the tangent plane is thus
20r—-1)—4(y+2)—4(z—2)=0.

If a surface can be written in the form z = f(z,y), then the function
g(z,y,2) =z — f(x,y) has as its gradient Vg = (—fz, —f,, 1). Hence, a normal
vector to the tangent plane of a surface z = f(z,y) is @ = (—fz, — fy, 1), which
we already discovered as 7 = (1,0, fz) x (0,1, fy).

The differential dy = f’dx says a little change in y can be approximated
by multiplying the derivative by a little change in x. For a function f : R" —
R™, the differential is dy = Dfdf, where Df is the derivative, dy is an m
dimensional vector of changes in the outputs, and d is an n dimensional vector
of changes in the inputs. We estimate changes in our outputs by multiplying
the derivative by changes in our inputs. For a function z = f(xz,y), this
gives dz = fydx + fydy. If we write our change in inputs as (dz,dy) = dds
for a unit vector « with magnitude ds, then a change in z is approximately
dz = Dfuds = Dgzfds, or the product of the directional derivative and ds.

The differential formula dy = D fdf can be used to connect ideas about
tangent lines, tangent planes, and approximation in all dimensions. The following
table summarizes how to use this notation in various settings.
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Function dy Df dz r=c Tangent space (line, plane, etc.)
dj = Df(&)d7
j- f(&)=Df(@)(& -2
y = f(z) dy f dx r=c y— fle)=f'(c)(z —¢)
dx x'(t) x —xz(c) x'(c)
(t) = (,y,2) dy y'(t) dt t=c y—yle)| =¥ ()| -0
dz Z'(t) z — z(c) Z'(¢)
L I R O B S R O PR (DR A O ]
dx Ty Ty du x — z(a,b) Ty Tolop o
o) =tenad | v | o o] | [0] @0 =@ | o=san)| = [w | [475]
dz Zu 2o z — z(a,b) Zu 2w

—

A change df in output is the output variable § minus its value f(&) at the input
¢. A change d7 in the input is the variable £ minus its value at ¢. Tangent
planes can be found in all dimensions using this notation.

We can use differential notation to estimate changes in a function. If the
temperature at a point in the plane is given by T'(x,y) = 2% — xy — y? degrees
Fahrenheit, and a particle is at (2,3), estimate the change in temperature
if the particle moves about .1 units in the direction of (3,4). The gradient
of T'is VT = (2z —y, —z — 2y), which at (2,3) is VT'(2,3) = (1,-8). The

change in inputs is (dz,dy) = .1 |g’i§‘ =+ (3,4) = (.06, .08). We calculate the
dx

dy} = Tpdx + Tydy =

(1)(.06) + (—8)(.08) = —.58. So the temperature will decrease a little over half a
degree.

A rectangle is rather wide and short. When you measure the edges of
the rectangle to estimate the area, which edge must be measured more pre-
cisely to not affect the area of the triangle? Area is A(h,w) = hw, so

dh dh
1A = [Ay Aw}{ }:[w ] |4

change in temperature (the output) as dT' = DT(2, 3) {

= wdh + hdw. Since w is large, a
dw

small change dh in the measurement of the height will have a much larger affect
on the change in area. Hence, you must be more precise when measuring the
shorter height.

The total resistance R in a circuit with two parallel resistors with resistance

Ry and Ry is given by the formula = R% + R%. Solving for R and taking

derivatives, one can show that dR = [g—; g—g] {de]. If Ry changes from 10

dRs
t0 9.9, and Ry changes from 20 to 20.2, would you expect a positive or negative
change in the total resistance R? We have dR; = —.1 and dRy = .2, and % = %,

so R = 20/3 and dR = [% %} [fﬂ = (2/3)%(—.1) + (1/3)2(:2) =

—4/90 + 2/90 = —2/90 < 0 which is negative. Manufactures of circuit boards
have to account for variations in the resistance of resistors. Differentials allow
them to estimate total changes in resistance due to possible changes in each
resistor.

9.3.1 Local Linearization

The textbook discusses the “Local linearization” of a function as L(z,y) =
fla,b)+ fz(a,b)(x—a)+ fy(a,b)(y—>b), which is equivalent to L(z,y)— f(a,b) =
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df, or L = f 4 dz (just add the function to the change in the function to get an
approximate value for the function at (x,y)). The error dz = L(z,y) — f(a,b)
in approximating f is also called E(z,y) in the book. You can estimate how
much error there is by the formula |E| < 2M(|dz| + |dy|)?, where M is any
upper bound for the values |fgzz|, |fyyl, and |fzy|. The value of this formula
is that it tells you how far off the change dz could be from the real change
Az = f(x +dx,y + dy) — f(x,y) in output.

9.4 The Second Derivative Test

The first derivative test breaks down in higher dimensions, because there are
more than 2 ways to approach a point of the domain. All that can be said
is that at an extreme value, the gradient is zero (as the tangent plane should
be horizontal). In higher dimensions, there are three classifications of critical
points: maximum, minimum, saddle point (a point where the tangent plane
is horizontal, but in some directions you increase and in other directions you
decrease). The second derivative test does not break down. To understand the
second derivative test, we need to learn about eigenvalues and eigenvectors of a
matrix.

If 2 = f(x,y), then Df(z,y) = [fw fy] is a vector field with two inputs

fzw fzy

called the Hessian of f. This matrix is symmetric, in that the upper right and
lower left are the same, if f is twice continuously differentiable.

An eigenvector is a vector (direction), such that multiplication by the matrix
is the same as multiplying the vector by a scalar (that scalar is called an
eigenvalue). Notationally this is written AU = AU, where X is the eigenvalue
and U is an eigenvector. Eigenvalues can be found by subtracting A from
each of the entries on the diagonal of a square matrix, and then asking for
which values of A the determinant equals zero (solve det(A — AI) = 0). In
linear algebra, you will learn much more about eigenvectors and eigenvalues.

and two outputs. Its derivative D? f(z,y) = { ] is a 2 X 2 square matrix

For example, the eigenvalues of the matrix E ﬂ are found as follows. Write

det {2 P, A} — 0. Compute (2= A)(2—A)—(1)(1) = 0 or 4—4A+A2—1 = 0.
Hence A\? —4X +3 = (A — 3)(A — 1) = 0 or the eigenvalues are A = 1, 3.

The eigenvalues of D?f give the “directional” second derivative in the
direction of a corresponding eigenvector. The largest eigenvalue is the largest
possible value of the second derivative in any direction. The smallest eigenvalue
is the smallest possible value of the second derivative in any direction. The
second derivative test follows: If the eigenvalues are all positive at a critical
point, then in every direction the function is concave upwards, which means
that the function has a minimum at that critical point. If all the eigenvalues
are negative, then in every direction the function is concave downwards, and
function has a maximum there. If there is a positive eigenvalue and a negative
eigenvalue, the function has a saddle point there. If either the largest or smallest
eigenvalue is zero, then the second derivative test fails.

For the function f(xz,y) = 2> —6xy+y?, the gradient is Df = [2z — 6y —6x + 2y],
which is zero only at x = 0,y = 0 (solve the system of equations 2z — 6y =

0, —62+2y = 0). The Hessian is D?f = [ 2 _6} . The eigenvalues are found by

-6 2
solving 0 = det [2_ A 6

0 o A} = (2-X)2—36 = 4—4A+ A2 =36 = (A—8)(\+4),
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so A = 8,—4 are the eigenvalues. Since there is a positive eigenvalue and a
negative eigenvalue, the function is concave upwards in one direction and concave
downwards in another direction, so there is a saddle point at the origin.

For the function f(z,y) = 3 — 3z + y? — 4y, the gradient is Df =
[3332 -3 2y74}, which is zero at x = 1,y = 2 or x = —1,y = 2. Hence
there are two critical points. The Hessian is D?f = 6; (2)} . Since there are
two critical points, we have th find the eigenvalues of two matricies. When
-6 0
0 2
and one is negative, there is a saddle point at (—1,2). When z = 1,y = 2, the

xr = —1,y = 2, the eigenvalues of [ are A\ = —6, 2. Since one is positive

g (2) are A = 6,2. Since both are positive, there is a minimum
at (—1,2) (as in every direction the function is concave upwards).

We can use these ideas to find the dimensions of the rectangular prism of
maximum volume that is located above the xy plane, and below the paraboloid
z = 9—22—y% We want to maximize the function V (z,y) = (22)(2y)(9—22—y?).
The gradient is zero at @ = 3/2,y = 3/2, and the Hessian at that critical point
s {54 —18

eigenvalues of

18 _54l" The eigenvalues are A\ = —36, —72, which are both negative,

which means we have found a maximum. I skipped a lot of details which you
can check. The maximum volume is f(3/2,3/2) = 81/2 and occurs at (3/2,3/2).
Since z is only half the length, the dimensions are 3 by 3 by 9/2.

If the domain of a function is restricted to a small region, then you use
the second derivative test to find the optimum solutions on the interior of the
domain. You use the first derivative test on the boundary of the domain to find
the optimum solutions on the boundary. If a function is continuous on a domain
that is closed (includes its boundary) and bounded, then there will always be a
maximum and minimum (this is called the extreme value theorem).

9.5 Lagrange Multipliers

To optimize a function f, subject to a constraint (such as a height restriction,
or a budget constraint for a business), we use a technique called Lagrange
Multipliers. Let f be the function you want to optimize and g = 0 is the
constraint. Define L = f — Ag for some scalar lambda which will be determined.
Find where all partials of L are zero. Under suitable conditions, the optimum
solutions will be a solution of VL = 0.

For example, to find the dimensions of the rectangular prism of maximum
volume that is located above the zy plane, and below the paraboloid z =
9 — 22 — 9%, we want to optimize the volume function f(z,vy,z2) = 4xyz. Our
constraint is the height of z, which we rewrite as g(r,y, z) = z— (9—2%—y?) = 0.
The Lagrangian is L(z,y, 2, \) = 4xyz — A(z — 9 + 22 + y?), and so the partials
of L are L, = 4yz —2X\z, L, = 4wz —2)\y, L, = 4oy — X\, Ly = —(2 — 9+ 2% +y?).
We now set each partial equal to zero and solve the system of equations. We solve

the first three equations for A to obtain A = 42% = 42Lyz = %Ty. The equation
42% = ‘g’”—; means y2 = x2 or & = y as the values for x and y must both be positive.
The equation 42% = “Ty means 4z = 8y? or z = 2y2. The we now substitute

xr =y and z = 2y? into the equation Ly = —g(x,9,2) =0 = —(2 — 9+ 22 + ¢?)
to obtain 2y? —9+y? +y?> =0 or y> = 9/4 so y = 3/2. Hence x = 3/2,2 = 9/2
and the dimensions are 3 by 3 by 9/2.

To find the point closest to the origin on the hyperbolic cylinder 22 — 22 = 1,
we want to optimize the distance f = /22 + y2 + 22 subject to the constraint
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g = z2 — 22 — 1 = 0. However, the square root in the optimization function

will result in rather messy derivatives, so instead we notice that distance is
minimized at the same places where distance squared is minimized, so we can
use f = 22 +y?+2? instead. The Lagrangian is L = 22 +y?+2%2 — (22 —22—1).
The gradient is VL(z,y,2,\) = <2x — 2lambdazx, 2y, 2z + 2z, — (22 — 2% — 1)>
We now solve for when the gradient is zero to obtain 2z — 2 Az = 2z(1 — ) =
0,2y = 0,2z(1 + ) = 0 for the first three equations. From the first equation
we have z = 0 or A = 1. However the constraint 2% — 22 = 1 (which is Ly = 0)
shows that x # 0, which means that A = 1. The second partial tells us that
y = 0, and the third partial shows us that 2z(2) = 0 or z = 0. Since z = 0,
we have using our constraint again that x = +1. So there are two solutions
(—=1,0,0) and (1,0,0).

9.5.1 Why Lagrange Multipliers works - linear dependence

If the domains of f and the constraint g are 2 dimensional, then g = 0 represents
a level curve of the function g. At a maximum of f where g = 0, the level curve
of f which passes through the location of the maximum will have a tangent line
that is parallel to the level curve of g. Hence, the gradients of f and g should
be parallel, as they are normal to level curves (and since they are normal to
the same tangent line, they should be parallel). Hence the gradient of f is a
scalar multiple of the gradient of g. Call that scalar \. Then V f = AVg. Hence,
at a maximum or minimum we will have 0 = Vf — AVg. This is equivalent to
solving VL = 0.

If the domains of f and the constraint are 3 dimensional, then g = 0
represents a level surface of the function g. At a maximum of f where g = 0, the
level surface of f which passes through the location of the maximum will have a
tangent plane that is tangent to the level surface g = 0. Hence, the gradients of
f and g should be parallel as they are both normal vectors to the same tangent
plane. So the gradient of f is a scalar multiple of the gradient of ¢g. This line of
reasoning extends to all dimensions.

If you have multiple constraints, then let the Lagrangian be L = f — A\jg7 —
A2ga — -+ -. Under suitable conditions, it can be shown that optimum solutions
will satisfy the equation VL = 0. Just keep subtracting a new variable times the
next constraint for each new constraint. This works precisely because at a an
optimal solution, it can be shown that the gradient of f is a linear combination
of the gradients of the constraints, i.e. Vf = Aig1 + -+ V,g,. You will learn
more about this topic when you study linear algebra.



Chapter 10

Double Integrals

After completing this chapter, you should be able to do the following;:

1. Explain how to setup and compute a double integrals, as well as how to
interchange the bounds of integration. Use these ideas to find area and

volume.

2. For planar regions, find area, mass, centroids, center of mass, moments of

inertia, and radii of gyration.

3. Explain how to change coordinate systems in integration, in particular to
polar coordinates. Explain what the Jacobian of a transformation is, and

how to use it.

4. Explain how to use Green’s theorem to compute flow and flux along and

aCross a curve.

10.1 Preparation and Homework Suggestions

Preparation Problems (11th ed) Preparation Problems (12th ed)
Day 1 | 15.1:21 15.1:35 15.1: 43 15.2:13 15.2:33  15.2:51  15.2: 59  15.3:17
Day 2 | 15.2: 21 15.2:31 15.3: 3 15.3: 23 | 15.6: 3 15.6:11 15.4: 9 15.3: 33
Day 3 | 15.7:8 15.7:9 16.4: 7 16.4:15 | 15.8:8 15.8:9 16.4: 7 16.4:19

The following homework problems line up with the topics we will discuss in

class.
Topic (11th ed) Sec | Basic Practice Good Problems Thy/App | Comp
Double Integrals 15.1 | 1-16, 21-50 17-20, 51-54, 57-66 55-56 67-76
Double Integral Applications | 15.2 | 1-12, 15-18, 19-40 | 13, 14, 41-48, 53-56 49-52
Polar Coordinates 15.3 | 1-22,23-32 33-42 (do 37 and 40 for sure) 43-46
Jacobian 157 | 1-8, 15-17 9-10,12-14, 19-22 18, 24
Green’s Theorem 16.4 | 1-20 21-34, 39-40 35-38 41-44

85
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Topic 12th ed Sec | Basic Practice | Good Problems Thy/App Comp
Double Integrals (rect.) 15.1 | 1-28

Double Integrals 15.2 | 1-24,33-46 19-32, 47-56,57-68 | 69-84 85-94
Area, Average Value 15.3 | 1-22 23-25 26

Polar Integrals 154 | 1-16 17-26, 27-36,41 37-40, 42-46 | 47-50
Double Integral Applications | 15.6 | 1-20

Jacobian 15.8 | 1-8, 17-19 9-10,12-16, 21-24 20, 26

Green’s Theorem 16.4 | 1-24 25-38, 42 39-41 43-46

It is crucial that you do not attempt to solve every integral. For the most
part, you are learning to set up integrals in high dimensions. I would suggest
that you do at least 15 problems a day or more in chapter 15 and 16,
where you spend time setting up integrals and not solving them. Check your
work against the answers I provide online, as I just give the set up for each
problem.

10.2 Double Integrals

The integral f; fdx represents the area of the region in the xy plane above the
interval [a,b] along the z axis under the curve f(x). We will define a double
integral [ [, fdA in such as manner to obtain for positive f(x,y) the volume
of the solid region in space above a region R in the zy plane under the surface
z = f(z,y). To start with, we will assume that the region R is a rectangle
a <z < bec <y <d Slice the rectangle up into many tiny rectangles of
dimensions Ax;, Ay;, making a grid for your region R. The area of each little
sub rectangle in the grid is AA4;; = Ax;Ay;. If the grid is made so that Az; and
Ay; are both really small, then the height of the surface z = f(x,y) above a sub
rectangle is approximately constant, and can be approximated by the value of f
at some point f(x;,y;) in that sub rectangle. This gives an approximation for a
small piece of volume as AVj; = f(x;,y;)AA;; = f(i,y;)Az;Ay;. Add up the

small pieces of volume to get total volume as V &~ Y 7" | Z;nzl fxi,yj)Ax; Ay;.

The double limit V' & limy, ;00 im0 D5y D50y f(2is y;) Az Ay, if it exists,
is called the double integral of f over R, and we write [ [, fdA. This limit will
always exist if the function is continuous and bounded on R.

If a double integral over a rectangle R exists, then it can be computed
using the formulas [ [, fdA = f: (fcd fdy) dx = fcd (f: fdm) dy. These last
two integrals are called iterated integrals. First integrate the inside integral
with respect to the variable inside, then integrate the result with respect
to the outside variable. For example the integral f02 ( f14 2z + 4xydy) dx =

f02 <2xy + 2xy2|j;:1) dx = f02 36xdr = 18z2|i:0 = 72 gives the same answer as
the integral f14 (f02 2z + 4xyd:v> dy = f14 (m2 + 2:c2y]i=0) dy = f14 4 + Sydy =

4y + 4y2f3=1 =164 64 — (4 +4) = 72. The reason a double integral can be
computed using either iterated integral has to do with looking at cross sections.
Rather than slicing R into a grid using both Az and Ay, just pick one direction
in which to make slices. For example, if we cut the region R along lines parallel
to the y axis, then each slice has a width Ax;, and we pick a point x; in each
interval on the z axis. The area of the cross section of the plane x = x; under
z = f(zi,y) above the xzy plane is given by the integral A = fcdf(xi,y)dy.
Multiply this area fcd f(x;,y)dy by Ax; for each i to obtain an approximation
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for the volume above the ith slice of R, i.e. AV, ~ fcdf(aci,y)dyAaci. Total
volume is found by adding up the little bits of volume and taking a limit as

Azx; — 0. This gives the volume as V = f: ( fcd fdy) dz. Since the parenthesis

take up extra space, we write simply [ [, fdA = fab fj fdydx = fj fab fdxdy.

If the region R is not a rectangle, but is bounded, and the function f
is bounded for all (z,y) in the region R, then we define the double integral
by placing the region R inside a rectangle which contains R and defining
f(z,y) =0 for all (z,y) not in R. This is how the double integral [ [, fdA is
defined theoretically. To compute the double integral, we pick bounds for the
integral which describe our region. The outer bounds of the integral must be
two constants. The inner bounds can be functions which involve variables of the
outer bounds. The outer bounds represent two horizontal or vertical lines. The
inner bounds represent two functions whose input is the outer bound variable.

The volume of the region under the plane z = 2z + 3y above the
region R which is bounded by the lines y = z,y = 0, = 3 can be
found using a double integral. If we choose y as the outer variable, and
x as the inner variable, then we have to pick two constants which trap
all the y values, and then pick two functions of y which trap all the x
values. The constants are 0 < y < 3, and the functions are y < x < 3.
The corresponding double integral is fo f 2x + 3ydxdy. Alternatively, if I
choose x as the outer variable and y as the inner variable, then x is between the
constants 0 and 3 (0 < x < 3) and y is between the functions y =0 and y = =
(0 < y < ). The corresponding integral is f03 fox 2x + 3ydydz. Notice that the
integrand 2z + 3y is the same in both iterated integrals, it was just the bounds
that changed.

If f =1, then [ [,1dA is the area of the region R. Hence area (a 2
dimensional quantity) is computed by adding up little bits of area dA. For

the region a < 2 < 0,0 < y < f(z), we have [ [,1dA = f; fof(gc) dydr =

f; y|£(w)dx = f: f(z)dz, which is the formula found in first semester calculus.

10.2.1 Switching the Order of Integration

Sometimes it is valuable to switch the bounds of integration by reordering the
variables. This is done by describing the region R (often by constructing a
graph), and then changing the way you describe the function. For example, to
compute the integral fol fyl @’ dxdy we could first try to integrate the inside

integral but we would fail (as [ %’ dx does not have an anti derivative which
is an elementary function). So instead we write the bounds as inequalities
0 <y <1,y <z <1 and realize that the region describe by these inequalities
is the triangle in the first quadrant under the line y = z for 0 < x < 1. Hence
we can describe the region also as 0 < z < 1,0 < y < z which gives the

integral fol foze '2dydx The inner integral is now fox e dy = ye© ¥ = et

lo =
Hence we have fo ? er® dydy = fo ze® dz, which is solved by letting v =
x? du = 2xdz,dx = gg, u(0) = 0,u(1) =1 and so fo ze” dr = f;zol xe“g—; =
L e = Jer) = 4 - ) = Yo 1)
The region R inside a circle of radius 3 above the x axis can be describe
as either -3 <2 <3,0<y<+vV9—a22oras0<y<3—y/9—9y2<z<
V9 — 2. Hence the integral [ [}, 1dA can calculated as either f N 9-a

orfof”gy

this reglon

dxdy. Both integrals give the answer 97 /2 which is the area of
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The integral f02 fjf dydzx gives the area of the region between the curves

y = 2z and y = 22 and can also be written as f(;l fy‘g dxdy.

10.3 Physical Applications

Integrals are used in a wide variety of applications. You should notice that in
most of the applications below, a formula which works for double integrals is the
same as the integral which we used for line integrals. The differentials dx, ds, dA
remind us which dimension we are working in. For lack of a better notation, I
will use d[J to represent any of these differentials when you are free to pick the
needed differential. The material which follows is very similar to the work we
did in the line integrals section. I start by giving a summary of the differential
formulas, and then we will use them to find physical quantities.

o Area: dA = fdx, fds,dzdy, rdrdd, ?)Eizg dudv,

Volume: dV = fdA,
Average Value: (f)0 = [ fdO,
Mass: dm = éd, ddx, dds, 6dA

Center of Mass: (z,7,z)m = [ (z,y,z) dm, where [Zdm = [xdm is a
first moment of mass

e Moment of Inertia: I = [r?dm is a moment of inertia, and [ R*dm =

[ r?dm gives R?m =1 or R=\/I/m

I strongly suggest that as you do each problem, start from a formula in differential
notation, and then modify it so that you have the right number of integrals. If
you do this, you will learn how to do calculus in all dimensions with ease.
Consider the region R = {(z,y)|0 < 2 < 3,0 < y < z} in the plane with
density function d(z,y) = 22 + y?> + 1. Area is A = f03 Jy dydz. Mass is

m= [ [pdm= f03 Jy (@® +y? + 1)dydz. We can also compute

[ ydm B ffRy6dA B f03 fox y(z? + 9% + 1)dydz

YT Tdm T T JR0dA TP TR g 2 o dyde

R Jr2dm [ [y*dm f03 Jo v2 (22 + y? + 1)dyda
’ Jdm Jdm I3 [F a2 442 + 1dyda

The temperature of a metal object covering the region R = {(z,y)|0 <
r < 3,0 <y <z} in the plane is given by f(x,y) = 2? + y? + 1. The area

of the region Ris A= [ [,dA = fos Jy dydz and the average temperature is
3

x
v z? +y? + 1dydzx.

we
o Jo

Consider a metal plate occupying the region in the plane bounded by the
curves x = 32 and y = x, with density function §(x,y) = xy. The mass of
the plate is m = [ [, 0dA = fol f?yZ (zy)dzdy. The mass of the region in the
plane bounded by the curves ¢ = 2y and = = y?, with density 22 + y?2, is
m= [’ f;Qy(xQ +y?)dwdy. The center of mass is z = L [ f:zy z(2? + y*)dady

_ 2 2

and § = % fo fyzy y(z? + y?)dxdy.

The centroid of many regions is geometrically obvious (such as the center
of a circle, square, or rectangle). If a centroid is known, then you can use this
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knowledge to simplify many integrals. For example, we can compute / / 3z +
0o Jo

4 06 4 6
5ydydx:3/ / xdydx+5/ / ydydr = 3TA+5yA=3-2-244+5-3-24,
o Jo o Jo
since the centroid of the rectangle R = [0, 4] x [0, 6] is (2,3) with area 24.

10.4 Changing Coordinate Systems - General-
ized u-substitution

To solve the definite integral f03 e?*dx, we make a substitution u = 2z or z = u/2
and then notice that dz = %du. Under this substitution, the interval [0, 3]
transforms to the interval [0, 6] and the integral becomes f03 e?*dy = f06 "% du.
Notationally we can write this as [, f(z)dz = [, f(z(u)) 92 du, where C,, and
C, are the integration bounds in terms of x and u respectively, and z(u) = u/2,

SO g—z = =. Similarly, the substitution = tan @ gives ‘;z = sec? 6 and allows us

/4 Ty sec? 0d = Oﬂ/4d9—7r/4, since tan0 = 0

to compute fo de =l o

and tan(mw/4) = 1.

To generalize this to higher dimensions we have to (1) change the bounds of
integration, and (2) replace Zi with the generalized version in high dimensions.
To change the bounds in a new coordinate system requires that we describe
the exact same region using different coordinates. We will illustrate this with
examples. The term j—z in higher dimensions is called the Jacobian of the
transformation, and is the absolute value of the determinant of the derivative of

the change of coordinates.

10.4.1 Polar Coordinates

Polar coordinates are defined by z = rcos#,y = rsin 6, which we can represent
using function notation as T'(r,0) = (rcosd,rsin ). Recall that the derivative
cos) —rsinf
sinf  rcosf
small changes in x,y based on small changes in r, 6. Determinants calculate area
(up to a plus or minus sign), so the determinant of the derivative measures the
change in area which occurs when you change from one coordinate system to
another. To get rid of the plus or minus sign, we take the absolute value of the

of this transformation is DT(r,0) = } . The derivative measures

determinant of the derivative and write g((m g) = |det(DT(r,0))| = |rcos?0 +
rsin®@| = |r|. This quantity is called the Jacobian of the transformation

from z,y coordinates to r, 0 coordinates. As long as r > 0, we can drop the

absolute value and we have that the Jacobian is 8(( g)) = r. So if we wish to

change from z,y to 7,60 coordinates, we use the formula [ [, f(z,y)dzdy =

I Ja, F(T(,0)5ERdrdd = [ [, f(T(r,0))rdrdd. Tn differential form, we
can abbreviate thls as dA = dxdy = rdrdf. In other words, after you change all
the x and y terms to r and @, you have to multiply the entire expression by r.

The region inside a circle of radius a in the plane is easily described in

polar coordinates as 0 < r < a,0 < 0 < 27. As a rectangular integral, we

can find the area of a circle by writing [ [ ;i;i 1dydz, which is a rather

difficult integral to compute. However if we change to polar coordinates, then
we compute [ f027r rdfdr or fOZTr Jy rdrdf = fOZTr r?/2|df = 2ma?/2 = ma?
rather easily. When regions of integration involve circles or curves that are
easily described in polar coordinates, often a change from rectangular to polar
coordinates is extremely useful.
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The volume of the region in space in the first octant which is below
the paraboloid z = 9 — 2% — y2, above the xy-plane, and satisfying
x >y, can be found using the iterated double integral [ [, 1dA =

fOS/\/E ny Vg g2 y?dxdy. The region R in the zy plane is
described in polar coordinates more simply as 0 < 0 < 7/4,0 < r < 3.
Changing to polar coordinates we have z = 9 — (22 +¢y?) =9 — 12

and then we compute the volume as V = f /4 fo 3)rdrdf, which is a much
easier integral to compute.

10.4.2 General Change of coordinates

In general, the Jacobian of a transformation 7' is the absolute value of the
determinant of the derivative of the transformation, often written Eiyg Polar
coordinates is one of many standard coordinate systems which people use. Some
problems are simple if you make the right substitution and very difficult if you
don’t. One advantage of working in higher dimensions is that you have the
ability to be creative and find the right change of coordinates to solve a problem.

Here are a few examples.

To find the area inside of an ellipse i—i + g—j = 1, use the change of coordinates
z = au,y = bv. The equation of the ellipse becomes u? + v? = 1 in the uv
a 0
[O bl = ab,
so we have A = [ [, dzdy = fwa abdudv = abffRuu dudv. Rather than
actually compute the integral, recall that [ [ R, dudv is the area of the region
in the uv plane, which is the area inside a circle of radius 1, or 7. Hence the
area of an ellipse is abr. If you want a difficult challenge, try computing this
integral without this change of coordinates.

If R is the region in the plane bounded by the curves x+2y = 1, 2+
2y =4,2x —y = 0,2z — y = 8, and we need to compute the integral
I [ g Tdxdy, then creating bounds for the integral is a rather ugly mess.
Instead, we perform the change of coordinates u = = +2y,v =2x —y
(notice that for the first time we have u and v solved in terms of =
and y). This change of coordinates transforms us to a box [1,4] x [0,8] in the
uv-plane. To find the Jacobian of this transformation, we need to first solve for
z and y in terms of u and v. To eliminate y, we add v+ 2v and get 5x. Similarly,
eliminating x gives 2u—v = by, so v = “*2” and y = 2“—” The Jacobian of this

1/5 2/5 || _ _ ,
det [2/5 1/5] =|-1/25—-4/25|=|—-1/5|=1/5 (don’t
forget the absolute value). Hence we have [ fR zdxdy = fl fo u2v (1) dvdu,
which is now a fairly simple integral to compute. The right change of coordinates
can simplify a problem. Which change of coordinates to use is suggested to you
in the homework on the first few problems, and then you are given a few where
you are to choose your own.

coordinate system. The Jacobian of this transformation is |det

transformation is

In the previous problem, to find the Jacobian aEfL Z;, we first solved for

z and y in terms of v and v. The “Inverse Function Theorem” implies that

a(r,y) =1/ ( Z;;) In other words, we could have found the derivative of the

transformation T'(z,y) = (u =2 + 2y,v = 22 — y) as E _21} , and then after

noticing that the absolute value of the determinant is | — 5|, we invert this to

obtain 8Eu’z; . So you can either solve for « and y first, and then take the

determinant, or you can take the determinant and then invert the result. You
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get the same answer either way.

10.5 Green’s Theorem

10.5.1 Circulation Density

Recall that circulation of F along a simple closed curve C' is fc FdF. We now
define circulation density for a vector field F(z,y) = (M, N) in the plane. At the
point (x,y) in the plane, create a circle C, of radius a centered at (z,y), where
the area inside of C, is given by A,. The quotient A%l fCa Fdr is circulation
per area. The limit lim,_,q Ai §C Fdr is called the circulation density of F' at

(x,7). It can be shown that lim,_,¢ A% . Fdi = N, — M, and that C, can be
replaced with a square of side lengths a centered at (z,y) with interior area A,
or any collection of curves C, which ”shrink nicely” to (x,y). We have N, — M,
is circulation per unit area.

As an example, for the vector field F = (—y, ), the circulation along a
circle of radius a is 2wa?. Division by the area ma® and taking a limit gives
lim,_,0 =45 2ma? = 2 which equals N, — My=1-(-1)=2.

Ta2

10.5.2 Green’s Theorem - Circulation Version

The idea of circulation density is used to show that circulation along C' can be
computed by adding up circulation density times dA along R, the interior of C'.
This result is called Green’s Theorem

fﬁ-dﬁ://Nz—MydA.
C R

The circulation of the vector field F = <y2, x> along the circle of radius 2 is
by Green’s Theorem [ [, 1 —2ydA = A —25A = n(2)? — 2(0)7(2)* = 47 where
A is the area inside the circle. The circulation of the vector field F = (—y,0)
along edge of the triangle with vertices (0, 0), (4,0), (0,3) is by Green’s Theorem
Jo F-di= [ [ 1dA = 13-4 =6, or just the arca inside of the curve. In fact, the
area inside R is [, F.di = Jo —ydz = [ [, dA for any curve C, which means
that area can be computed using a line integral. A planimeter is a drafting tool
which uses Green’s theorem to calculate area of any planar region.

10.5.3 Flux Density - Divergence V - F

For a vector field F' (z,y) = (M, N), we define the flux density, or divergence of
F , as follows. Recall that flux of F across C'is fc Fiids = 3§c Mdy— Ndx where
71 is the unit outward pointing normal vector and C' is oriented counter clockwise.
At the point (z,y) in the plane, create a circle C, of radius a centered at (z,y),
where the area inside of C, is given by A,. The quotient A%, fca F - ids is a flux

per area. The limit lim,_,q Ai fo F -iids is called the flux density of F at (z,y),
or divergence of F. It can be shown that lim, o A% b F.iids = M, + Ny,

and we write divF = M, + Ny, =V-. F. Just as with circulation density, it can
also be shown that C, can be replaced with a square of side length a centered
at (x,y) with interior area A,, or any collection of curves C, which ”shrink
nicely” to (z,y), and you still obtain the divergence (flux per unit area) as

M, + Ny The notation divF = V- F = (2, 2} (M,N) = 2 M+ 2N gives

a convenient way to remember divergence.
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As an example, we compute the flux density at (0,0) for the vector field
(z,y)

[z’
flux is [, (z,y) - %ds = Jo V2? +y?ds = a [, ds = a2ma, since the circum-

ference of a circle is 2wa. The area inside a circle of radius @ is ma?. Hence

lim, 0 ~5527a® = 2, which equals divF = M, + N, =1+1=2.

a2

F = (z,y). A circle of radius a has unit normal vector 7 = so the

10.5.4 Green’s Theorem - Flux version

Flux in the plane can be computed by instead adding up little bits of flux, which
are found by multiplying a flux density by area. This gives the flux version of
Green’s Theorem

/Mdy—Ndx:/ﬁ-ﬁds://divﬁdA://(Mm—i-Ny)dA
C c R R

for C' a simple closed curve with interior R and outward normal 77, where C is
oriented counter clockwise.

For the vector field F' = (z,y), we have divF = 2. The flux of F across the
curve which forms the boundary of the quarter circle of radius 3 in the first
quadrant (it has 3 curves which form the boundary C') is simply |, o Mdy—Ndz =

Jo F - iids = [ [p2dA =2A =227 = 9T Alternatively this intcgral requires
setting up 3 integrals. The integrals along the axes are zero because F'-ii = 0. The
non-zero integral is found using the paramaterization 7(t) = (3 cost, 3sint), and

is foﬂ/Q Mdy—Ndx = Oﬂ/2(3 cost)(3cost)—(3sint)(—3sint)dt = OW/Q 9dt = 2.

10.6 Proofs of Green’s Theorems

10.6.1 Proof of the Circulation version of Green’s Theo-
rem

To see why Green’s theorem is true, the first step will be to add zero. Let
ﬁ(w,y) = (M, N) be a vector field in the plane. Let C be a simple closed
smooth space curve, whose interior is R. The circulation of F along C' is given
by J. c F - dr. Begin by breaking the region R into little rectangular pieces with
boundary C;; oriented counterclockwise and interior with area AA;;. If the
rectangular region touches the curve C, then the boundary contains a small
portion of C. Notice that when we add together the circulation along adjoining
rectangles, we calculate the flow along the common boundary twice, once with
each orientation. By our "adding zero” trick, the sum of the circulation along
adjacent rectangles equals the circulation along the exterior of the union of the
rectangles. All of the interior integrals disappear, which means we can calculate
total circulation by adding up the circulation along each Cj;.

- . = . 1 - .
/CF-dr:ZZ/CUFdr:ZZAAU/CijF-drAAij
=22 Circulatizzzlong Cinay~ 3 S (N - M,)AA,

Taking limits gives us Green’s Theorem fcﬁ dr = [ [, (%—JZ - %—];[) dA =
S Jr (No — M,) dA.
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10.6.2 Proof of the Flux version of Green’s Theorem

We now discuss why Green’s theorem (the flux version) works. Let F(z,y) =
(M, N) be a vector field in the plane. Let C be a simple closed smooth space
curve (oriented counterclockwise), whose interior is R. The flux of F across C is
given by [, c F - iids, where 7 is the unit outward normal to C. To find total flux,
we add up little bits of flux. Break the region R into little rectangular pieces
with boundary C}; oriented counterclockwise. If the rectangular region touches
the curve C, then the boundary contains a small portion of C. When we add
together the flux across adjoining rectangles, we calculate the flux along the
common boundary twice, once with each orientation. The sum of the flux across
adjacent rectangles is the same as the flux across the exterior of the union of
the rectangles. This means that the total flux equals the sum of the flux across
all the little rectangles. We now write

0 = 1 .
/CF-ﬁds:ZZ/CijF-ﬁds:ZZAAij /CijFﬂdsAAij
- Z Z WAAU ~ Z Z(Mm + Ny)AA;;

Taking limits gives us the flux version of Green’s Theorem fcﬁ - fids =
J Jr (M, + Ny)dA.




Chapter 11

Surface Integrals

After completing this chapter, you should be able to do the following;:

1. Explain how to setup surface integrals, as well as how to compute surface

area.

2. Use surface integrals to compute flux across a surface.

3. Apply the principles studied in the line integrals section on average value,
density, centroids, center of mass, first moments of mass, moments of
inertia, and radii of gyration to surfaces. Summarize your results using

differential notation.

4. Describe Stokes’s Theorem and how it relates to circulation.

11.1 Preparation and Homework Suggestions

Here are the preparation problems.

Preparation Problems (11th and 12th ed)

Day 1 | 16.5:9

16.5:33  16.6:19

16.6:41

Day 2 | 16.5:31

16.6:45 16.7:3

16.7:17

The following homework problems line up with the topics we will discuss in
class. Do as many of each type as you can. You will want to get into the Good
and Theory problems to obtain an A in the class.

As a general rule of thumb, do not solve every integral. The most important
part is making sure you understand how to set up integrals, as well as why the

94

Topic Sec | Basic Practice Good Problems | Thy/App Comp
Surface Integrals 16.5 | 1-12, 19-32, 33-38,39-44, | 13-18

Param. Surface Integrals | 16.6 | 17-26, 35-44, 45-48 27-34

Stokes’s Theorem 16.7 | 1-6, 13-18, 19 7-10, 20-23, 26 | 11-12, 24-25

Topic Sec | Basic Practice Good Problems | Thy/App Comp

Surface Integrals 16.5 | 17-26, 37-54 55-56

More Surface Integrals | 16.6 | 1-18, 19-28, 43-46 | 29-42, 47-48

Stokes’s Theorem 16.7 | 1-6, 13-18, 19 7-10, 20-23, 26 | 11-12, 24-25
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integration formulas we use actually work. As you set up an integral, take a
moment to ask yourself how you would solve it using u-substitution or integration
by parts, or make a note that neither of those methods would work.

11.2 Surface Area and Surface Integrals

Recall that the line integral fc 1ds gives arc length of a curve C' and is an

extension of the single integral fab 1dz which gives length of [a, b]. We will define
the integral [ [ g ldo to give surface area of a surface S, which is an extension
of the double integral [ [, 1dA which gives area of a region R.

We start by finding the surface area of the surface S : z = f(z,y) for
(z,y) in some region R. The idea is to add up little pieces of surface area.
Divide R into a tiny grid where each little rectangle has dimensions Az and
Ay. The portion of the surface above a tiny rectangle is approximately a
parallelogram. The vectors (1,0, f,) Az and (0,1, f,) Az represent the edges
of the parallelogram. The area of the parallelogram is the magnitude of their

cross product, which is | (= fz, — f,, 1) AzAy| =/ f2 + fZ + 1. A little piece of

surface area is approximated using the formula do = ,/f2 + f2 + 1dA. Surface
area is found by adding up little bits of surface area, hence o = f fs do =

S Jrr/f2+ 2+ 1dA where S stands for the surface, and R stands for the

shadow of the surface in the zy-plane.

If the surface is given by the parametrization S : #(u,v) = (x,y, z) for (u,v)
in some region R, then let Au and Av be small changes in the inputs u and
v (placing a grid on the region R). A portion of the surface corresponding to
a tiny change in u and v is approximately a parallelogram, whose edges are
given by the vectors 7, Au and 7, Av. The magnitude of the cross product
of these two vectors is in differential notation do = |r, x 7,|dudv. Total
surface area is found by adding up little bits of surface area, giving the integral
formula 0 = [ [gdo = [ [, |Fu X 7y|dudv. Notice that if the surface is z =
f(x,y), then a parametrization is 7(x,y) = (z,y, f(z,y)) and so |7 X 7y |dzdy =

[ (1,0, f) x (0,1, fy) |[dvdy = \/f2 + 2 + 1dA. for a surface y = f(z,z2), the

parametrization 7(x, z) = {(x, f(x, 2), 2) gives do = \/f2 + 1 + f2dxdz. Likewise
do = \/1+ f2 + f2dydz for a surface z = f(y, 2).
Consider the surface S : z = 9 — 2% — 2 for 22 + 92 < 3. We compute

F2H 241 = /5?1 4% 1 L. Swfaceareaiso = [ [ydo = [°, LW 422 + 442 + ldydz.

Converting to polar coordinates gives fo fo V4r? 4 1rdrdf, which is an in-
tegral we can compute (letting u = 4r? + 1). The same surface can be
parametrized as 7(r,0) = <rcost9,rsin9,9—r2> for 0 < r < 3and 0 <
6 < 2m. We calculate |7 x 7| = |{cosf,sinf, —2r) x (—rsind,rcos6,0)| =
| (2r? cos 49, 2r2sin 6, r cos? § + r sin® 9> | =[(2r%cosf,2r’sinf,r) | = Virt +r2 =
vV 47‘2 Hence we have do = rv4r2 + 1drdf as before, which means
fo V/4r2 + 1rdrdf. Notice that you get the same answer in two different
Ways
If a surface consists of many different pieces (a cube has 6 faces), then a
surface integral over such a surface is the sum of the integrals over each of the
surfaces. To integrate the function g(x,y, z) = yz over the surface of the wedge
in the first octant bounded by the coordinate planes and the planes x = 2 and
y+ 2z = 1, we notice that the surface has 5 parts. The portions are S7 : = 0 for
0<y<1,0<z<1l—y,Sy:z=2forfor0<y<1,0<z<1-—9,5:y=0
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for0<z<2,0<2<1,8:2=0for0<x<2,0<y<l,and Sy:z=1—y
for 0 < 2 <2,0<y <1 Hence to find [ [4gdo, we must evaluate all 5
integrals. We compute do; = v/1+ 0+ 0dzdy,dos = /1 + 0+ 0dzdy, dos =
V0 + 1+ 0dzdx,doy = /0 + 0+ ldydx,dos = /0 + (—1)2 + 1dydz, and so

I Js, 900 + [ Js, 9do +[ Jg, 9do +[ Js, 9do
= fo fo Y yzdzdy +f01 folfy yzdzdy +f02 fol(O)zdzdx +f02 fol y(0)dydx
= fo fo Y yzdzdy +f01 fol_y yzdzdy +0 +0

1/24 +1/24 +0 +0

To match the book, the book states that if F"(x,y, z) is a function whose
level surface is S, and we project the surface onto some planar region R with
normal vector p, then do = ‘lvVFFL‘ dA. For functions of the form z = f(z,y), let

F =z— f(z,y) and =< 0,0,1 >which gives |‘VVF15'| \/ f2+ f2+1. So the

ideas in the book can just be replaced with parametrizing the surface.

11.2.1 Flux across a surface

Recall that in the plane, the flux of F (z,y) across a curve C' is a measure of
how much fluid flows across the curve in the outward direction 7, and we write
Flux = [, F - iids for a unit vector . The flux of F (x,y, 2) across an orientable
surface S with continuous unit normal vector 7i(x,y, z) is the surface integral
Flux = [ [ F - iido. If the surface S is a closed surface, then it is customary to
use the outward pointing normal vector 71 to perform computations. If a surface
is parametrized by 7(u,v), then i(z,y,z) = + I:“ im, where the plus or minus
is chosen to make the vector point out of the surface. Since do = |7, X 7 |dudv,
flux is [ g F-iido = + [ [g F - 220n|7, x 7ldudo = + [ [ F - 7, % Fydudv,
and we never have to look at the magnitude of the cross product. Some surfaces,
such as a Mobius strip, do not have a continuous unit normal 77, and are called
nonorientable. Flux across such a surface is not defined.

We now find the flux of F =< z + y,y, z > across the surface of the cube in
the first quadrant bounded by = = 2,y = 3,2z = 5. We will use the outer normal
vector. The cube has 6 surfaces, so we have to compute the flux across all 6
surfaces. The surfaces, normal vectors, and vector field along each surface are
found in the table below:

Jrffs
JFfo fo

+fo fo
+v/2/3

gdcr
\f 2dydx
\f 2dydx

7(u, v) 7l F(#(u,v)) F.i do Flux
<07y72>7 0< Yy < 370 <z<5 <_17070> ﬁ(07y72) = (y,y,z> -y ldde f03 f05 _dedy
= 3 05
(2,,2),0<y<3,0<2<5 | (1,0,0) | F(2,9,2) = 2+y,y,2) | 24y | ldydz | [} [) 2+ ydzdy
(,0,2),0<2x<2,0<2<5 | (0,-1,0) ﬁ(w,O,z): (x,0,z2) 0 ldzdz 0
(2,3,2),0<2<2,0<2<5 | (0,1,0) | F(2,3,2)=(x+3,3,2) | 3 |ldedz| [} [’ 3dzda
2 (3

(z,9,5),0<x<2,0<y<3| (0,0,1) F(z,y, (x,y,5) 5 1dzdy Jo Jo bdydx

5) =
The sum of the first two integrals is fo fo 2dzdy = 2(3)(5) = 30. We compute

fo fo 3dzdzr = 3(2)(5) = 30 and fo fo 5dydz = 5(2)(3) = 30. The flux of F
across this surface is the_’sum 90.

To find the flux of F' = W across the unit sphere (using the
outward normal to orient the sphere - so that flow out is seen as positive). We
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should get a negative number since the vector field has all arrows pointing
in. I will first show the general procedure for doing this integral, and then
show you a short cut only because of symmetry. Parametrize the sphere using
7(0, ) = {cos @ sin ¢, sinfsin ¢, cos ¢) for 0 < 6 < 27,0 < ¢ < 7. We compute
(with a little patience) 7y x 7y = <— cos 6 sin? ¢, — sin 0 sin? ¢, — sin ¢ cos ¢>> =
—sin ¢ (x,y, z). Since this vector points into the sphere, we multiply by —1 and
compute flux across S as fo% Iy %-sin ¢ {(x,y,2) dpdl = OZW Jy —sinp(z?+

Y2+ 22) "V 2dpdo = OQW fo7r —sin ¢dpdf = —4x. Alternatively, you could notice
(zy,z)

Vo2 (z,y,2)

since the radius is 1 and the normal vector has to point radially. Hence
F-ii=—(2+y2+2%) = —1. So the flux is J J¢—ldo = —0 = —4m,
since the surface area of a sphere of radius a is 4ma?. Notice that in this example
I bypassed parametrizing the surface by finding the unit normal vector through
inspection, and used known facts about surface area. Flux, as seen in these last
two problems, leads to Gauss’s Law, Ampere’s Law, Faraday’s Law, and many
other quantities of interest in electromagnetism.

that due to symmetry the unit normal vector is 7 =

11.3 Physical Applications

Integrals are used in a wide variety of applications. You should notice that in
most of the applications below, a formula which works for a surface integral
is the same as the double integral and line integral formulas. The differentials
dz,ds,dA,do remind us which type of integral to use. For lack of a better
notation, I will use d[J to represent any of these differentials when you are free
to pick the needed differential. I start by giving a summary of the differential
formulas, and then we will use them to find some physical quantities.

o Area: dA = fdx, fds,dxdy, rdrdf, ggzgg dudv,

e Surface Area: |7, X7 |dudv = do = |/ f2 + f2 + ldzdy = \/fZ + 1 + f2dzdz =
1+ f2 + f2dydz
e Volume: dV = fdA = fdo,

e Flux: dFlux = F - ndo, F - fids where 7 is a normal vector to either a
surface S or a curve C.

e Average Value: (f)0= [ fdOJ,
e Mass: dm = dd0d, ddx, dds, ddA, §do

e Center of Mass: (z,y,2z)m = [ (z,y,z)dm, where [Zdm = [xdm is a
first moment of mass

e Moment of Inertia: I = fr2dm is a moment of inertia, and fRQdm =
[ r?dm gives R?m =1 or R=\/I/m

I strongly suggest that as you do each problem, start from a formula in differential
notation, and then modify it so that you have the right number of integrals. If
you do this, you will learn how to do calculus in all dimensions with ease.
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11.3.1 Examples

The temperature at each point in space on the surface of a sphere of ra-
dius 3 is given by T(z,y,2) = sin(xy + z). The average temperature on the
sphere is given by the surface integral AV = % I g fdo. A parametrization
of the surface is 7(0,¢) = (3cosfsin¢,3sinfsing,3cos¢p) for 0 < § < 27
and 0 < ¢ < m. We have T(0,¢) = sin((3 cosfsin ¢)(3sinfsin ¢) + 3 cos ¢),
and the surface area differential is do = |Fp x 74| = 9sin¢. The surface
area is 0 = OQW foﬂ 9sin ¢pdpdf and the average temperature on the surface is
AV =1 0% Jy sin((3 cos 0 sin ¢)(3 sin fsin ¢) + 3 cos ¢)9 sin pdepdf.

Consider the surface which is the upper hemisphere of radius 3. A parametriza-
tion of the surface is 7(6, ¢) = (3 cosfsin ¢, 3sinfsin ¢, 3cos @) for 0 < § < 27
and 0 < ¢ < w/2. The surface area differential is do = |Fy X 7p|d0dp =

9sin ¢dfd¢. The surface area is 0 = 027r ™2 9 sin ¢dpdf. 1If the density is
§(x,y, z) = 22, then we have

_ J ydm _ [ Jsyddo _ Oﬂ 7T/2(351n€sm¢)(3c05¢) (9 sin ¢)dodb
YT Tdm T ] [godo JET (723 cos ¢)2(9 sin ¢)ddd

R \/erdm B \/fmz + 22dm 077 Tr/z[(?)cosﬁsmgﬁ) + (3 cos ¢)?](3 cos ¢)?(9sin ¢)dpdl
= =

Jdm Jdm 2T (7123 cos ¢)2(9 sin ¢) dpdd

11.4 Stokes’s Theorem and Circulation Density

11.4.1 Curl Vx F

Green’s Theorem generalizes to surfaces, but we first have to discuss circulation
density of F = (M, N, P) about a line with unit direction vector 7. At a
point (z,y, z) in space, create a plane through (x,y, z) with unit normal vector
fi. In that plane, create a circle C, of radius a centered at (z,y,z), where
0, is the surface area of the region inside C, on the plane. The quotient
1 fC FdF is a ratio of circulation per surface area. The limit hma_>0 fc Fdr

is called the circulation density of F' at (,y, z) about . It can be 5hown that
hma_>0 fc Fdr = (Py— N, M, — P;, N, — M,) - i, and so the circulation
density of F about 7 is (Py— N, M, — P,,N, — M,) -i. We call the vector
(P, — N,,M, — P, N, — M,) the curl of F' and write curl(F) = V x F =
(Py—N.,M, — P,, N, — M,). The notation V x F gives a convenient way to
remember the formula, as

curlF = Vx F = det

0 o .0 o _ 0 0
<ayP—azN,8ZM—aPaxN—ayM>

k
Nl
0z
P

= Sl =
2o

Circulation density of F at (z,y, z) about 7, written curlF - i is largest when 7@
points in the direction of curlF'. This means that the curl of a vector field is the
direction of the greatest circulation density, and the magnitude of the curl is
the circulation density in that direction.

11.4.2 Stokes’s Theorem

A vector field in the plane (M, N) can be extended to 3D by writing F =
(M, N,0). The curl is curlF' = (0,0, N, — M,,). A normal vector to a surface S
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in the zy plane is @ = (0,0, 1), Green’s Theorem can be written as fc F.di =
J Jgewrl-fido = [ [, (Ny — M) dA, where C is a simple closed curve in the
plane and S = R is the region in the zy-plane inside C. Stokes’s Theorem states

that
/ﬁ~d?=//curl-ﬁda
c s

where C' can be any simple closed space curve which is the boundary of a surface
S, where 71 is a continuous unit normal vector to the surface S and C' is oriented
compatibly with 77 by the right hand rule.

Let F = (x+y,y+ 2z, + z). Let C be the space curve which travels around
a triangle in space hitting the vertices (2,0, 0), (0, 3,0),(0,0,6) in this order.
The planar surface S : §+ 4+ =1orz=6-3z—-2yfor R: 0 < x <
2,0 <y < % has as its boundary the curve C'. The surface S has an
upward pointing normal vector and downward pointing normal vector. Since
C is oriented to go counterclockwise around S when seen from above, we will
use the upward pointing normal vector 7 x 7y = (—fz, —fy, 1) = (3,2,1). We
calculate curlF = (—1,—1,—1), and so Stokes’s Theorem states fcﬁ Sdr =

ffscurlF |:L§:Z|d0—ffs —L-1,-1)- 331 ||< 3,2,1)|dA = [ [, —6dA =
—6A =—6-5-2-3 =—18. Notice that it was not necessary to compute the
magnitude |ru X 7| . Alternatively, you can parametrize all three edges and
compute three line integrals.

Let F = <z y2,x2>, so that curlF = (0,1 —22,0). The parametric sur-
face S : §(u,v) = (ucosv,usinv,u) for 0 < u < 1,0 < v < 27 is a cone.
The curve C : &(t) = (cost,sint, 1) is a circle of radius one at height z = 1
and forms the boundary of the surface S. If we choose as our normal vec-
tor to S the outward normal (away from the z axis), then to use Stokes’s
theorem we must orient C' counterclockwise as seen from below the surface.
This meas that we must reverse the direction we move along C. A normal
vector to S is 7, X 7, = (—ucosv,—usinv,u), but to make it point out-
ward we change the sign. Stokes’s Theorem states that f207r (1,sin’t, cos? t) -
<— sint, cost 0> dt = fo% fol (0,1 —2(ucosv),0) - (ucosv,usinv, —u) dudv =

fo (ucosv))(usinv)dudv = 0. Both integrals evaluate to zero. Al-
ternatlvely, you can use Stokes theorem in another way by realizing that the
surface Sy : #(u,v) = (ucosv,usinv,1) for 0 < u < 1,0 < v < 27 has the
same boundary (use the flat top of the cone at height 1 instead of the sides
of the cone). The normal vector we need to match the orientation on C
s (0,0, —1). Hence Stokes theorem gives (using a different S with the same
boundary) fzoﬂ (1,sin*¢t, cos? t)-(—sint, cost, 0) dt = Ozﬂ fol (0,1 —2(ucosv),0)-
(0,0, —1) dudv = 0% fol Odudv = 0. This last integral is by far the simplest to
compute, as it is the integral of zero. One of the benefits of Stokes’s Theorem is
that you can pick a new surface to simplify a problem.

11.4.3 Why Stokes’s Theorem Works

We now discuss why this theorem works. Let ﬁ(x, y,2z) = (M, N, P) be a vector
field in space. Let C' be a simple closed space curve, which is the boundary of a
surface S with orientation 7. Orient C' compatibly with 7 by the right hand
rule. The circulation of F along C is given by fC F . dr. As with all integral
problems, we show that in order to find total circulation, we add up little bits of
circulation. We will use an ”adding zero” trick. Breaking the surface S into little
parallelogramish pieces with boundary C;; oriented counterclockwise about 7. If
a parallelogramish piece touches the curve C, then the boundary contains a small



CHAPTER 11. SURFACE INTEGRALS 100

portion of C. When we add together the circulations along adjoining pieces of
the surface, we calculate the flow along the common boundary twice, once with
each orientation. Our ”adding zero” trick gives the sum of the circulation along
adjacent pieces of the surface to be zero. Hence total circulation is found by
adding up little bits of circulation. If we divide and multiply by the surface area
enclosed by each little piece, then each little bit of circulation is a circulation
density (about 7 ) times surface area. Notationally we write

L L 1 L
/CF'drZZ/CijF.drZZAU@/C”F.CZTAUM

circulation about 7 along C;; N
-3 Ady FAaij 2 303 ewl(F) - il

Taking limits gives us Stokes’s Theorem [, F.di= | s curl(F) - fido.



Chapter 12

Triple Integrals

After completing this chapter, you should be able to do the following;:

1. Explain how to setup and compute triple integrals, as well as how to
interchange the bounds of integration. Use these ideas to find area and

volume.

2. Explain how to change coordinate systems in integration, with an emphasis
on cylindrical, and spherical coordinates. Explain what the Jacobian of a
transformation is, and how to use it.

3. Use triple integrals to find physical quantities such as center of mass, radii
of gyration, etc. for solid regions.

4. Explain how to use the Divergence theorem to compute the flux of a vector
fields out of a closed surface.

12.1 Preparation and Homework Suggestions

Preparation Problems (11th ed) Preparation Problems (12th ed)
Day 1 | 15.4:3 15.4:21  15.4:24 15.5:5 15.5:3 15.5:21 15.5:24 15.6:23
Day 2 | 15.4:29  15.5:9 15.6:11 15.6:31 | 15.5:29  15.6:27 15.7:11 15.7:31
Day 3 | 15.6: 56 15.6:80 16.8:6 ~ 16.8:13 | 15.7: 56 15.7:78 16.8:6  16.8:13
The following homework problems line up with the topics we will discuss in
class.
Topic Sec | Basic Practice Good Problems Thy/App | Comp
Triple Integrals 154 | 1-36 41-44, 47-48 45-56 49-52
Triple Integral Applications | 15.5 | 1-18 19, 20, 26-28 21-25
Cylindrical and Spherical 15.6 | 1-10, 13, 15-30, 33-38, 43-62 | 11, 12, 31, 32, 39-41 | 86-90
Triple Integral Applications | 15.6 | 63-85
Jacobian 15.7 | 16,17,19,20 21-24
Divergence Theorem 16.8 | 1-16 17, 21-26 27, 28-32

101
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Topic Sec | Basic Practice Good Problems Thy/App | Comp
Triple integrals 15.5 | 1-16, 21-32 17-20, 33-44 45-48 49-52
Triple Integral Applications | 15.6 | 21-34 35-38

Cylindrical and Spherical 15.7 | 1-10, 13, 15-30, 33-38, 43-62 | 11, 12, 31, 32, 39-41 | 83-86

Triple Integral Applications | 15.7 | 63-82

Jacobian 15.8 | 18,19,21,22 23-26

Divergence Theorem 16.8 | 1-16 17, 21-26 27, 28-32

It is crucial that you do not attempt to solve every single integral. For the
most part, you are learning to set up integrals in high dimensions. I would
suggest that you do at least 15 problems a day or more in chapter
15, where you spend time setting up integrals and not solving them. Check
your work against the answers I provide online, as there I just give the set up
for each problem.

12.2 Triple Integrals

The triple integral of a function f(z,y, z) over a solid region D in space, written
J | [ fdV, is defined similarly as a double integral. We break a region in space
up into little boxes of dimensions Az, Ay, Az, and then take a limit of the sum
SIS fAzAyAz to get the triple integral. If the function is f = 1, then this
integral gives the volume of the region D in space. Since there are 6 ways to
order x,y, and z, there are 6 different iterated integrals which can be used to
compute a triple integral. Sometimes one order to use is easier than another.
Which one to use will come with practice. Make sure you tackle the problems
in the text which ask you to write an integral in 6 different ways. You have to
pick an outside, middle, and inner variable in any case. The outside variable is
bounded between two constants, representing two parallel planes which bound
the region D. The middle variable is bounded between two functions of the outer
variable. These two middle functions represent two cylinders which bound the
solid region D (not circular cylinders, but generic cylinders which are parallel to
the inner variable axis). The inner variable is bounded between two functions of
the outer and middle variables, and represent two surfaces which bound region

The region above the paraboloid z = z? + 32 below the plane
z = 4 has x values between —2 and 2 (the outer bounds). The

_ y values lie in the cylinder 22 + 42 = 4 or y = —V4 — 22 and
)., y = v4 —22. The z values lie between the surfaces z = z2 + y?
4 and z = 4. So we have for our bounds the inequalities —2 < z <

T 2, V4 —22 <y < Vad—22 22 +y? < 2z < 4 (planes, cylinders,
surfaces) which can be used to find the volume of this region by the triple

integral V = f_22 f_% f;2+y2 1dzdydx. This integral is rather complicated

to solve by hand as written, but using an appropriate high dimensional change
of coordinates, this integral becomes rather trivial. Spend most of your time
learning to set up integrals rather than solving them.

The region D below the cylinder z = 1—y? above the 2y plane and
between the planes x = 1,z = 4 can be found as follows. If we choose
x,y, z, as our outer, middle, inner bounds, then 1 < x < 4,—-1 <
y < 1,0 < z < 1— 2 If we choose instead the order z,z,y, then
wehave 0 <2< 1,1 <z <4,—v/1—2 <y <+1— 2z (just solve for
y in the equation z = 1 — y? to find the bounds for y). Hence the

Tl
volume of this region can be written two ways as V = f14 fil fol Y 1dzdydr =



CHAPTER 12. TRIPLE INTEGRALS 103

o 1 1 vdydads.

We currently have two ways of finding volume, either [ [, fdAor [ [ [, 1dV.
If we use the differential notation dA = fdx = dxdy and dV = fdA = fdxdy =
dxdydz, then we can use this notation to remind us of how to find area and
volume in any manner. The formula dA = fdz reminds us that little pieces of
area can be found by taking a height times a little change in x and using a single
integral. The formula dA = dxdy reminds us that area can also be found using
a double integral as area is little changes in width times little changes in length.
Similarly dV = fdA = fdxzdy reminds us that volume can be found using a
double integral, or dV = dxdydz says that volume can be found using a triple
integral. The shell method dV = 27 f(x)dz and disk method dV = 7 (f(z))dx
can also be summarized in differential notation, and since there is only dz you
only use a single integral. If you can remember how to compute a little piece of
volume dV using any of these formulas, then total volume is found by adding
up all the little pieces. The number of integrals used depends on the number of
differentials dx, dy, dz. If you use a single integral to represent one, two, or three
integrals, then you can write area as “add up little bits of area” A = |[| R dA,
and volume as “add up little bits of volume” V = [ p AV, where the number of
integrals is determined by the differential formula you choose for dA or dV'.

12.3 Changing Coordinate Systems - General-
ized u-substitution

Just as we did with polar coordinates in 2, we can compute a Jacobian for
any change of coordinates in 3D. We will focus on cylindrical and spherical
coordinate systems. Remember that the Jacobian of a transformation is the
absolute value of the determinant of the derivative of the transformation.

12.3.1 Cylindrical Coordinates

Cylindrical coordinates are defined by x = rcos,y = rsinf, z = z, which we
can represent using function notation as T'(r,0,z) = (rcosf,rsiné,z). The
cosf —rsinf 0

derivative of this transformation is DT'(r,0,z) = |sinf rcosf 0. The Ja-
0 0 1
cobian of the transformation is ‘g((fgzz)) = |det(DT(r,0,z))| = |r|. Provided that

r > 0, we have the differential formula dV = rdrdfdz, or in integral form the
equation [ [ szyz f(a,y, 2)dadydz = [ [ [, f(T(r,0,z)) giié’g drdfdz =
[ Jp,,. f(T(r,0,2))(r)drdfdz. In summary, converting to cylindrical coordi-
nates requires that we multiply by r. Cylindrical coordinates are extremely
useful for problems which involve cylinders, paraboloids, and cones.

We now find the volume of the region D in space which is above
the cone z = y/x2 + y2 and below the paraboloid z = 6 — 22 — 3/°.
Switching to cylindrical coordinates, these equations become z = r
for the cone and z = 6 — r2 for the paraboloid. The surfaces intersect
whenr =6 —r% or > +r—6=(r+3)(r—2)=0,orr =2,-3.
Since z > 0, we know that the intersection we seek is at r = 2. So
the region D in space is the set of points above z = r, below z = 6 — r2, and
inside the cylinder » = 2. We can describe this region using the inequalities
0<6<2r,0<7r<2,r<z<6-—r2 This gives us the volume as V =

027r f02 f:s_rz (r)dzdrdf.

b

3 S
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The integral fo I \/va . T2_y

ume of the region in space satlsfymg the inequalities 0 < x <
2, ~Vad—22 <y <Vi—22 /922 —y2 < 2 < /922 — 2,
or the region in space with positive x values, inside the cylinder
22 + y? = 4, and inside the sphere 22 + 32 + 22 = 9. Since this
problem involves a cylinder, we will write the integral in cylindri-
cal coordinates. The region is described using —7w/2 < 6 < 7/2,0 < r <
2,—V9—-r2<z< \/ — 72, which means that we can rewrite the integral as

> dzdydz represents the vol-

V=" ﬂ; 32 fo f7 r)dzdrdf. The volume of the region outside the cylinder
of radius 2, 1n31de the sphere of radius 3, with positive x values is given by either

fﬁZQ f2 f, o (r)dzdrdd or V = fﬂﬁzf ffz o r)drdzdf (since the

cylinder intersects the sphere at a height of v/5).

12.3.2 Spherical Coordinates
Spherical coordinates are defined by T'(p, 6, ¢) = (p cos 8 sin ¢, psin 0 sin ¢, p cos @) .

The Jacobian of this transformation is m = |det(DT(p,0,9)| = | —
p, )

p*sin @| (verify this as homework). Using differential notation, we write dV =
dxdydz = |p? sin ¢|dpdfdg, so that whenever you convert to spherical coordi-
nates from rectangular, you have to multiply by |p? sin ¢| inside the integral, or
just p? sin ¢ if you require 0 < ¢ < 7. Problems which involve cones and spheres
often have simple integrals in spherical coordinates.

The volume inside a sphere of radius a is [*, [ % I a;_z;_y _dzdydz.
This integral is rather difficult to solve by hand (if it is even possible). How-
ever the region inside the sphere is describe in spherical coordinates as 0 <
¢ <m0 <0 <210 < p < a Hence the volume is found using V =
Jo s o o o P?sin¢dpdfdp. This integral can be evaluated using elementary tech-

niques and gives the volume V = §7ra‘3

The integral fo fo f ™ rdzdrdd represents the region in bpace

with y > 0,r <1, above the cone z = \[7“ and below the sphere 22
4 — 2. The cone and sphere intersect precisely when » = 1. In rect-
1= Y -t —y? dzdydzx.
V3@
In spherical coordinates, the cone is given by the equation ¢ = 7/6
(draw a right triangle with hypotenuse 2 and one side length 1), and the sphere

angular coordinates, the integral is f N

is given by the equation p = 2. The integral becomes [ [; /6 fo p? sin ¢pdpdedd.

12.4 Physical Applications

Integrals are used in a wide variety of applications. Notice that in all of the
applications we have done this semester, a formula which works for double
integrals will also work for single, line, surface, and triple integrals. The
differentials dx,ds,dA, do,dV remind us which dimension we are working in.
For lack of a better notation, I will use d[J to represent any of these differentials
when you are free to pick the needed differential. The line integrals section
contains the details for each of the physical quantities we compute.
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12.4.1 The Short Version

Everything we learned about physical applications this semester can be sum-
marized in the following table list, where recall that d[J stands for any of
dz,ds,dA,do,dV .

e Area: dA = fdx, fds,dzdy, rdrdd, 8(3 ggdudv

e Volume: dV = fdA,dxdydz, rdrdfdz, p? sin ¢dpdfde, d(i f]’ j})) dudvdw,

e Surface Area: do = |7, X 7|dudv =/ f2 + f2 + ldxdy

e Average Value: fI= J fd0, and dm = §d0, ddx, dds, 6d A, ddo, 6dV

e Center of Mass: (Z,7,z)m = [(x,y, z)dm, where [ zdm = [ zdm is a first
moment of mass

e Moment of Inertia: = [rad?*dm is a moment of inertia, and [ R*dm =
frzdm gives R?m = I or R = \/I/m. Recall that rad® = y* + 2° for I,
rad®> = x? + 2% for I, and rad?® = 2? 4+ y? for I,.

e Flux: dFlux = F - iido or F - iids where 7 is a normal vector to either a
surface S or a curve C'. Also Green’s theorem and the Divergence theorem
are dFlux = (M, + N,)dA = (M, + N, + P.)dV = div(ﬁ)dV =V.Fdv,
where V - F' is flux density.

e Circulation: dCirc = F-Tds = Mdx+ Ndy. Green’s theorem and Stokes’s
Theorem are dCirc = (N —My)dA = curl(F)-fido = curl(F)- |7, x 7, |dudv,

where curl(F ) V x F,and V x F - i is circulation density about 7.

I strongly suggest that as you do each problem, start from a formula in differential
notation, and then modify it so that you have the right number of integrals. If
you do this, you will learn how to do calculus in all dimensions with ease.

12.4.2 Examples

Consider the region in space inside the cylinder r = 4 bounded above by
the cone z = r and below by the zy-plane. Using cylindrical coordinates,
we have dV = rdzdrdf. The volume is f027r f(:l Jy rdzdrd6. 1If the density is
§(x,y,2) = 2 + 2z, then we have

~ Jydm [ [ [yyedv I [ sind((r cos8)? + 2)rdzdrdd

y= - - ™ r
Jdm [ Jpedv 02 f04 Jo ((rcos 0)% + z)rdzdrdf
B — Jr2dm | [ 2?4+ y2dm 027T f04 Jo ((rcos6)? + (rsin)?)((rcos 0)? + z)rdzdrdf
’ Jdm Jdm fo% f; Jo ((rcos0)? + z)rdzdrdf

The temperature at each point in space of a solid covering the region D
(the upper portion of the sphere of radius 4 centered at the origin) is given by

T(z,y,z) = sin(xy + z). The volume is V = f I \}?6% OV 6= e dyda

V16—z2
and the average temperature is AV = f I \/Wfo sm(zy +
z)dzdydz.
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12.5 Differentials

Differentials can be used to summarize most of the work we do in integration.
In this unit we have discussed the area differential

9(z,y)
O(u,v)

dA = fdx = dxdy = rdrdf = dudv

and volume differential

dV = fdA = dadydz = rdrdfdz = p* sin pdpdfdp = Mdudvdw.
O(u, v, w)
Differentials can be thought of as a little piece of whatever they represent. To
find a total, we add up little pieces. To find total area we add up little pieces
of area A = [ rdA. To find total volume we add up little pieces of volume
V= fD dV. In any case our choice for dA or dV will tell us whether we use a
single, double, or triple integral to do the calculations.

12.6 Flux Density - Divergence V - F'

For a vector field ﬁ(x, y) = (M, N), we define the flux density, or divergence of
F, as follows. Recall that flux of F across C' is $c Fiids = $o Mdy— Ndzx where
71 is the unit outward pointing normal vector and C' is oriented counter clockwise.
At the point (z,y) in the plane, create a circle C, of radius a centered at (z,y),
where the area inside of C, is given by A,. The quotient Aia 3§Ca F - fids is a flux

per area. The limit lim,_,q A%l $o F -iids is called the flux density of F at (z,y),
or divergence of F. Tt can be shown that lim,_q A%L fc F . iids = My + Ny,

and we write divE = M, + N, =V- F. Just as with circulation density, it can
also be shown that C, can be replaced with a square of side length a centered
at (x,y) with interior area A,, or any collection of curves C, which ”shrink
nicely” to (z,y), and you still obtain the divergence (flux per unit area) as

M, + Ny. The notation divE =V .-F = <61, ay> (M,N) = iM—I— 6%]\7 gives

a convenient way to remember divergence.

In 3D, the flux of F' across S, I Js F - fido, is a measure of flow across S
where 7 is a continuous unit normal vector to S. Flux density at (z,y, z) is
found by creating a sphere S, of radius a centered at (x,y, z) with interior
volume V, and outward normal vector 77, and considering the quotient flux per
volume V% I s, F - fido. The limit lim,_o v% I s, F - fido is the divergence of
F at (x,y,2) and equals divﬁ(m,y, z)=V- F=M,+ Ny, + P..

As an example, we compute the flux density at (0,0,0) for the vector field

<I7y7z>
(z,y,2)]"

flux is [ [ (z,y,2) - iZ? do = [ [¢/22+y?+22do = a [ [gdo = adma?,
since the surface area of a sphere is 4ra?. The volume 1n51de a sphere of radius
a is 37ra3. Hence lim,_,q 4m3 4ma® = 3, which equals divF = M, + Ny + P, =
1+14+1=3.

so the

F= (z,y, z). A sphere of radius a has unit normal vector 7 =

12.6.1 The Divergence Theorem

The divergence theorem states that flux in space can be computed by instead
adding up little bits of flux, which are found by multiplying a flux density by
volume. This gives the Divergence theorem

/Lﬁ.ﬁdo:///ljv.ﬁdv:///D(MrJrNerPZ)dV
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for S a closed surface with interior D and outward normal 7.

Let S be the surface of the rectangular box in the first quadrant bounded
by the plane z = 0,z = 1,y = 0,y = 2,z = 0,z = 3 with outward normal
fi. Let F be the vector field <x +3y?,y% — 4z, 22 + xy>, hence the divergence
is My + Ny + P, =1+ 2y+2 =3+ 2y. The flux of F across the surface
S would require 6 integrals. The divergence theorem gives [ |, Sﬁ - fido =
JJ[p3+3ydV =3V +35V =3-6+3-1-6=36.

Now consider the vector field F = (yz,—xz,3xz). Let D be the solid region
in space inside the cylinder of radius 4, above the plane z = 0, and below the
paraboloid z = z24%2. The surface S consists of 3 portions. The flux of F across
S is found using the divergence theorem as [ [ [,V - Fav = [, —3zdV =
=3zV =3-0-V =0. If & # 0, then the bounds of integration could have been
0<0<2m,0<7<4,0<z<r2 and dV = rdzdrd6.

We now discuss why the Divergence theorem is true. Let ﬁ(x,y,z) =
(M, N, P) be a vector field in space. Let S be a simple closed smooth surface
(oriented with the outward unit normal vector 7), whose interior is the solid
region D. The flux of F across S is given by I Js F - fido. The idea is that
in order to find total flux, we add up little bits of flux. Break the region D
into little cubical pieces with boundary S;;x, each oriented using the outward
normal. If the cubical region touches the surface S, then the boundary contains
a small portion of S. Notice that when we add together the flux across adjoining
cubes, we calculate the flux across the common boundary twice, once with each
orientation. By our ”adding zero” trick, the sum of the flux across adjacent
cubes is the same as the flux across the exterior of the union of the cubes, as the
interior sums cancel. We can calculate total flux by adding up the flux along
each 5.

//Sﬁ-ﬁda:ZZZ//mF nda—ZZZAV]k// F - iido AVijy
DD BIES NI 3 9) NIRRT

Taking limits gives us the Divergence theorem [ [ F-fido = J [, (M, + N, + P,)dv.
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