Rapid Recall

1. For the vector field $\vec F(x,y) = (x+y, x^2)$ state $M$ and $N$.

Solution

The notation we'll be using is $\vec F(x,y)=(M,N)$ or $\vec F(x,y,z) = (M,N,P)$. This gives

  • $M=x+y$
  • $N=x^2$.

2. Given $\vec F(x,y) = (x+y, x^2)$ and $\vec r(t) = (t^2, t^3)$ state $\vec F(\vec r(t))$.

Solution

Recall that $\vec r(t) = (t^2, t^3)$ means $x=t^2$ and $y=t^3$, so $$\vec F(\vec r(t)) = \vec F(x=t^2, y=t^3) = (t^2+t^3, (t^2)^2).$$

3. Set up the work integral $\int_C Mdx+Ndy$ for $\vec F(x,y) = (x+y, x^2)$ and $\vec r(t) = (t^2, t^3)$ for $t\in [-1,3] $.

Solution

We have the following:

  • $M=x+y = t^2+t^3$,
  • $N=x^2 = (t^2)^2$,
  • $dx = 2tdt$,
  • $dy = 3t^2dt$.

This gives $$\int_C Mdx+Ndy =\int_{-1}^3 \underbrace{(t^2+t^3)}_{M}\underbrace{(2tdt)}_{dx}+\underbrace{(t^2)^2}_{N}\underbrace{(3t^2dt)}_{dy} .$$

4. Set up the work integral $\int_C \vec F\cdot d\vec r$ for $\vec F(x,y) = (3xy, x+2y)$ and $\vec r(t) = (t^2+1, 2t)$ for $t\in [0,2] $.

Solution

We have the following:

  • $F(\vec r(t)) = (3(t^2+1)(2t), (t^2+1)+2(2t))$,
  • $\frac{d\vec r}{dt}=(2t,2)$,
  • $d\vec r=(2t,2)dt$.

This gives $$\int_C \vec F\cdot d\vec r =\int_{0}^2 \left[(3(t^2+1)(2t))(2t)+((t^2+1)+2(2t))(2)\right]dt .$$

Group problems

  1. Compute the integral $\ds \int_{-1}^3 t\sqrt{4+9t^2}dt$.
  2. Use the arc length formula and the parameterization $\vec r(t)=(a\cos t,a\sin t)$ of a circle to verify that the circumference of a circle of radius $a$ is $2\pi a$.
  3. A force given by $\vec F = (y,-x+y)$ acts on an object as it moves along the curve $\vec r(t) =(t,t^2)$ for $0\leq t\leq 2$. Note that this means $x=t$ and $y=t^2$, so $\vec F = (t^2,-t+t^2)$. Compute $\ds \int_C\vec F\cdot \frac{d\vec r}{dt}dt$ (the work done by the force along the curve).
  4. Consider the curve $C$ parametrized by $\vec r(t) = (t, t^2)$ for $0\leq t\leq 2$.
    • Give a vector equation of the tangent line to the curve at $t=1$.
    • Set up an integral that gives the length of this curve. Just set it up.
    • A wire lies along the curve $C$. The density (mass per length) of the wire at a point $(x,y)$ on the curve is given by $\delta(x,y) = y+2$. Set up an integral formula that gives the total mass of the wire.
    • The wire contains charged particles. The charge density (charge per length) at a point $(x,y)$ on the curve is given by the product $q(x,y)=xy$. Set up an integral formula that gives the total charge on the wire.

At this point, please wander the room and help your peers as needed.


Problem Set
Today

« January 2020 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31