Rapid Recall

  • Find a vector orthogonal to both $\vec u=\left<\pi,e,5\right>$ and $\vec v=\left<\sqrt{2},q,7\right>$

Solution

$\left|\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\ \pi & e& 5 \\ \sqrt{2}& q & 7\end{array} \right|=\left<7e-5q,-(7\pi-5\sqrt{2}), q\pi-\sqrt{2}e \right>$

  • Find the area of the parallelogram with the vectors $\vec u=\left<3,4,0\right>$ and $\vec v=\left<0,0,5\right>$ as sides.

Solution

Note that $\vec u \cdot \vec v = 0$, which means that the parallelogram is a rectangle, so $A = \sqrt{3^2+4^2} \cdot 5 = 25$.

  • Convert the integral $\int_0^6 \int_0^y x \, dx \, dy$ into polar coordinates.

Solution

$\int_{\pi/4}^{\pi/2} \int_0^{6\csc\theta} (r\cos\theta) \, r \, dr\,d\theta = \int_{\pi/4}^{\pi/2} \int_0^{6\csc\theta} r^2\cos\theta \, dr\,d\theta$ Note: the $d\theta\,dr$ order is a little more involved.

Group problems

  1. A wire lies along the curve $C$ parametrized by $\vec r(t) = (t^2+1, 3t, t^3)$ for $-1\leq t\leq 2$.
    • Compute $ds$. (Remember - a little distance equals the product of the speed and a little time.)
    • Set up integral formulas to find $\bar x$, then $\bar y$, then $\bar z$, for the centroid of $C$.
  2. Let $P=(3,0,0)$, $Q=(0,2,0)$, and $R=(0,0,1)$.
    • Find a vector that is orthogonal to both $\vec{PQ}$ and $\vec {PR}$. Call it $\vec n$.
    • Find the area of the triangle $\Delta PQR$.
    • Let $S=(x,y,z)$ be any point on the plane $PQR$. What is $\vec {PS}\cdot \vec n$ (you should get a number)? Then compute and expand the dot product, to get an equation of the plane.
  3. Draw the region described the bounds of each integral. (Use the Mathematica notebook Integration.nb to check your work.)
    • $\ds\int_{0}^{3}\int_{0}^{9-x^2}\int_{0}^{3-x}dzdydx$
    • $\ds\int_{0}^{1}\int_{0}^{1-z}\int_{0}^{\sqrt{1-x^2}}dydxdz$
    • $\ds\int_{0}^{3}\int_{0}^{\pi}\int_{0}^{5}rdzdrd\theta$
    • $\ds\int_{-1}^{1}\int_{0}^{1-y^2}\int_{0}^{x}dzdxdy$
  4. Set up an integral formula to compute each of the following:
    • The mass of a disc that lies inside the circle $x^2+y^2=9$ and has density function given by $\delta = x+10$
    • The $x$-coordinate of the center of mass (so $\bar x$) of the disc above.
    • The $z$-coordinate of the center-of-mass (so $\bar z$) of the solid object in the first octant (all variables positive) that lies under the plane $2x+3y+6z=6$.
    • The $y$-coordinate of the center-of-mass (so $\bar y$) of the same object.
  5. Consider $\int_{0}^{4}\int_{x}^{4}\cos(y^2)dydx$.
    • Draw the region described by the bounds.
    • Swap the order of the bounds on the integral (use $dxdy$ instead of $dydx$) and then actually compute the integral.

Problem Set
Today

« June 2019 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30