Rapid Recall

0. I'll start by graphing for you the curve $r=3-2\cos\theta$ in the $xy$-plane.

1. Given that $\ds \frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta-r\sin\theta$ and $\ds \frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta+r\cos\theta$, write a vector equation, in the $xy$-plane, for the line tangent to the curve $r=3-2\cos\theta$ at $\theta=\pi/2$ .

Solution

Note that when $\theta=\pi/2$, we have $r=3$. The $(x,y)$ coordinate is $(0,3)$. Since $\frac{dr}{d\theta}=-2\sin\theta$, we get $\ds \frac{dx}{d\theta} = (2\sin\theta)\cos\theta-(3-2\cos\theta)\sin\theta$ and $\ds \frac{dy}{d\theta} = (2\sin\theta)\sin\theta+(3-2\cos\theta)\cos\theta$. At $\theta=\pi/2$, the above gives $\frac{dx}{d\theta}=(2)(0)-(3)(1) = -3$ and $\frac{dy}{d\theta}=(2)(1)+(3)(0) = 2$. Putting this all together, we have $$ \vec r(t) = (x,y) = (-3,2)t+(0,3).$$

2. Write an integral formula for the arc length of the curve $r=3-2\cos\theta$.

Solution

We get $\int_0^{2\pi}\sqrt{\left(\frac{dx}{d\theta}\right)^2+\left(\frac{dy}{d\theta}\right)^2}d\theta$, using the values computed above for $\frac{dx}{d\theta}$ and $\frac{dy}{d\theta}$. If you want to actually plug all this in, then we have $$\int_0^{2\pi}\sqrt{\left((2\sin\theta)\cos\theta-(3-2\cos\theta)\sin\theta\right)^2+\left((2\sin\theta)\sin\theta+(3-2\cos\theta)\cos\theta\right)^2}d\theta.$$

3. Find the area of a parallelogram whose edges are the vectors $(-1,3)$ and $(4,2)$.

Solution

Remember the formula $A=|ad-bc|$. Here we have $(a,b) = (-1,3)$ and $(c,d)=(4,2)$, so we get $$A = |(-1)(2)-(3)(4)|=14.$$

4. Fill in the missing pieces in the following equation: $$\int_{-1}^{2}e^{5x}dx = \int_{?}^{?}e^{u}(?)du.$$

Solution

Note that $u=5x$ so we have $du=5x$ or $dx=\frac15 dx$. In addition, when $x=-1$ we have $u=-5$, and when $x=2$ we have $u=10$. This gives $$\int_{-1}^{2}e^{5x}dx = \int_{-5}^{10}e^{u}(\frac{1}{5})du.$$

Group problems

  1. Consider the curve $v=u^2$ and use the change-of-coordinates $x=2u+v$, $y=u-2v$.
    • Draw the curve in both the $uv$-plane and the $xy$-plane.
    • Find the slopes $\frac{dv}{du}$ and $\frac{dy}{dx}$ at $u=-2$.
    • Give a vector equation of the tangent line to the curve in the $uv$-plane at $u=-2$. [Check: $(u,v) = (1,-4)t+(-2,4)$.]
    • Give a vector equation of the tangent line to the curve in the $xy$-plane at $u=-2$. [Check: $(x,y) = (-2,9)t+(0,-10)$.]
  2. Find the area of a triangle with vertices $(1,0)$, $(0,2)$, and $(5,5)$.
From Ben: The problems below need changing..
  1. Draw the region in the $xy$-plane described by $-1\leq x\leq 2$ and $x\leq y\leq 4-x^2$.
  2. Compute the integral $\ds\int_{x}^{4-x^2}dy$ (assume $x$ is a constant).
  3. Compute the double integral $\ds \int_{-1}^{2}\left(\int_{x}^{4-x^2}dy\right)dx$.
  4. Draw the region in the $xy$ plane described by $\pi/2\leq \theta \leq \pi$ and $0\leq r\leq 5$.
  5. Compute the integral $\ds\int_{0}^{5}rdr$.
  6. Compute the double integral $\ds \int_{\pi/2}^{\pi}\left(\int_{0}^{5}rdr\right)d\theta$.

Problem Set
Today

« May 2019 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31