Rapid Recall

  • A rover is travelling on the line $\vec r(t) = (a,b)t+(c,d)$. Let $\vec v =(a,b)$ and let $P=(c,d)$. An anomaly is located at $Q=(m,n)$. Which of the following gives the distance between the rover's location and the anomaly as a function of time?
    1. $|\vec Q-\vec v|$
    2. $|\vec Q-\vec r|$
    3. $|\vec Q-\vec P|$

Solution

The rover's location is $\vec r$, and the anomaly is at $Q$, so a vector from the position to the anomaly is $\vec s = \vec Q-\vec r$. The length of this vector is $|\vec Q-\vec r|$.

  • Continuing from before, let $\vec s$ be the vector from the rover's current position to the anomaly, so $\vec s = \vec Q-\vec r$. Which of the following gives the angle between the direction the rover is traveling and the anomaly.
    1. $\ds\cos^{-1}\left(\frac{\vec v\cdot \vec s}{|\vec v||\vec s|}\right)$
    2. $\ds\cos^{-1}\left(\frac{\vec r\cdot \vec s}{|\vec r||\vec s|}\right)$
    3. $\ds\cos^{-1}\left(\frac{\vec P\cdot \vec s}{|\vec P||\vec s|}\right)$

Solution

The rover's direction of motion is $\vec v$, and a vector from the position to the anomaly is $\vec s = \vec Q-\vec r$. The angle between these is $$\ds\cos^{-1}\left(\frac{\vec v\cdot \vec s}{|\vec v||\vec s|}\right).$$

  • Given the vectors $\vec F$ and $\vec d$ on the board, draw the projection of $\vec F$ onto $\vec d$.

Solution

I'll draw this on the board

  • If $\vec F=(6,7)$ and $\vec F_{\parallel \vec d} = (2,-1)$, then what is $\vec F_{\perp \vec d}$?

Solution

Since $\vec F_{\parallel \vec d}$ and $\vec F_{\perp \vec d}$ must sum to $\vec F$, then $\vec F_{\perp \vec d} = \vec F - \vec F_{\parallel \vec d} = (6,7)-(2,-1) = (4,8)$. Note that $\vec F_{\parallel \vec d} \cdot \vec F_{\perp \vec d}=0$ which should be the case (why?).

  • The force $\vec F = (3,5)$ acts on an object which undergoes a displacement $(-2,1)$. Find the work done by $\vec F$ though this displacement.

Solution

Work is given as the dot product of $\vec F$ and $\vec d$. Thus, $W=(3,5)\cdot(-2,1)=-6+5=1$.

Group problems

  1. The projection of $\vec F$ onto $\vec d$ is $(3,0)$. Give two vectors $\vec F$ and $\vec d$ so that this can occur.
  2. Give a different pair $\vec F$ and $\vec d$ with the same projection.
  3. Repeat the previous problem, assuming that $\text{proj}_{\vec d}{\vec F} = (-1,2)$.
  4. Let $x=2u+3$ and $y=4v-5$. Complete the $u,v,x,y$ table below, and then construct a graph of both $u^2+v^2=1$ (in the $uv$-plane) and the corresponding equation in the $xy$-plane. $$ \begin{array}{c|c|c|c} u&v&x&y\\\hline 0&0&3&-5\\ 1&0&5&-5\\ 0&1&&\\ -1&0&&\\ 0&-1&&\\ \end{array} $$
  5. Draw the three circles $x^2+y^2=1$, $(x-2)^2+(y-5)^2=1$, and $(x+2)^2+(y+3)^2=1$.
  6. Draw $\left(\frac{x}{3}\right)^2+\left(\frac{y}{5}\right)^2=1$.
  7. Draw $\ds \frac{(x-2)^2}{16}+\frac{(y-3)^2}{9}=1$.
  8. Draw $\ds \frac{(x-2)^2}{16}-\frac{(y-3)^2}{9}=1$.
  9. Draw $\ds \frac{(y-3)^2}{9}-\frac{(x-2)^2}{16}=1$.

Problem Set
Today

« May 2019 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31