Rapid Recall

  • Draw the surface $\vec r(t,v) = (3\cos t, 3\sin t, v)$ for $0\leq t\leq 2\pi$ and $1\leq v\leq 4$.

Solution

It's a right circular cylinder of radius 3, whose center lies along the $z$-axis for $1\leq z\leq 4$.

  • Draw the curve $\vec r(t) = (3\cos t,3\sin t,t)$ for $0\leq t\leq 6\pi$.

Solution

It's a helix, radius is 3, spiraling counterclockwise (when viewed from above) at it wraps around the $z$ axis for $0\leq t\leq 6\pi$.

  • For the vector field $\vec F = (xyz, 3x+4y+5z, xy+z^2)$, compute $D\vec F$ and then compute $\vec \nabla \cdot \vec F$ and $\vec \nabla \times \vec F$. Recall $\vec \nabla = \left(\frac{\partial}{\partial x},\frac{\partial}{\partial y},\frac{\partial}{\partial z}\right)$.

Solution

We compute

  • $D\vec F = \begin{bmatrix}\begin{matrix}yz\\3\\y\end{matrix}&\begin{matrix}xz\\4\\x\end{matrix}&\begin{matrix}xy\\5\\2z\end{matrix}\end{bmatrix}$,
  • $\vec \nabla \cdot \vec F = yz+4+2z$, and
  • $\vec \nabla \times \vec F = (x-5, xy-y, 3-xz)$.

Do you notice how every single entry from the derivative of $\vec F$ shows up in exactly one spot in one of the latter quantities?

Group problems

  1. Draw each curve or surface given below.
    1. $\vec r(u,v) = (4\cos u,v, 3\sin u)$ for $0\leq u\leq \pi$ and $0\leq v\leq 7$.
    2. $\vec r(t) = (3\cos t,3\sin t,t)$ for $0\leq t\leq 6\pi$.
    3. $\vec r(u,v) = (u\cos v,u\sin v,v)$ for $0\leq v\leq 6\pi$ and $2\leq u\leq 4$.
    4. $\vec r(t) = (0,t,9-t^2)$ for $0\leq t\leq 3$.
    5. $\vec r(x,y) = (x,y,9-x^2-y^2)$ for for $0\leq x \leq 3$ and $-3\leq y\leq 3$.
    6. $\vec r(u,v) = (u\cos v,u\sin v,9-u^2)$ for $0\leq u\leq 3$ and $0\leq v\leq 2\pi$.
  2. For the vector field $\vec F = (x^2,3z+x,2y+4z)$, compute both $\vec \nabla \cdot F$ and $\vec \nabla \times F$.
  3. For the same vector field compute each of the following, or explain why they cannot be computed.
    • $\vec \nabla\times(\vec \nabla \cdot \vec F)$
    • $\vec \nabla\cdot (\vec \nabla \times \vec F)$
    • $\vec \nabla\cdot (\vec \nabla \cdot \vec F)$
    • $\vec \nabla\times(\vec \nabla \times \vec F)$
  4. For the vector field $\vec F = (M,N,P)$, compute each of the above that can be computed.

Problem Set
Today

« April 2019 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30