


Rapid Recall
- For $\vec F = (xy^2, 3x+4y+5z, 2xyz)$, compute $D\vec F(x,y,z)$.
Solution
The differential of $\vec F$, written as a linear combination of partial derivatives, is $$ d\vec F = \begin{pmatrix}y^2\\3\\2yz\end{pmatrix}dx + \begin{pmatrix}2xy\\4\\2xz\end{pmatrix}dy + \begin{pmatrix}0\\5\\2xy\end{pmatrix}dz .$$ The above, when we write is as the product of a matrix and a vector, gives $$ d\vec F = \begin{bmatrix} \begin{matrix}y^2\\3\\2yz\end{matrix} &\begin{matrix}2xy\\4\\2xz\end{matrix} &\begin{matrix}0\\5\\2xy\end{matrix} \end{bmatrix} \begin{pmatrix}dx\\dy\\dz\end{pmatrix} .$$ The derivative of $\vec F$ is hence the matrix $$ D\vec F(x,y,z) = \begin{bmatrix} \begin{matrix}y^2\\3\\2yz\end{matrix} &\begin{matrix}2xy\\4\\2xz\end{matrix} &\begin{matrix}0\\5\\2xy\end{matrix} \end{bmatrix} . $$
- For $\vec F (x,y) = (2x+3y,3x)$, find a function $f(x,y)$ so that $\vec \nabla f=\vec F$. Such a function $f(x,y)$ we call a potential for $\vec F$.
Solution
We need $\vec F(x,y)=(f_x,f_y)$. This means we need a function $f(x,y)$ such that $f_x = 2x+3y$ and $f_y=3x$. Integrating each partial, with respect to the corresponding variable, gives $$\int f_x dx = \int2x+3ydx = x^2+3xy+C_1(y)\quad\text{and} \quad \int f_y dy = \int 3x dy=3xy+C_2(x).$$ Because we assumed $y$ is constant in the first integral, note that $C_1(y)$ could be any function of $y$. Similarly note that $C_2(x)$ could be any function of $x$. One option for the function $f(x,y)$ we seek is $$f(x,y) = x^2+3xy,$$ as this fits both
- $f(x,y)=x^2+3xy+C_1(y)$ with $C_1(y)=0$, and
- $f(x,y)=3xy+C_2(x)$ with $C_2(x) = x^2$.
- For the vector field $\vec F$ from the previous problem (units in Newtons), compute the work done by $\vec F$ on an object that moves along the curve $C$ that starts at $A=(1,2)$, follows the path $\vec r(t)=(-3,4)t+(1,2)$, and ends at $B=(-2,6)$ (units in meters).
Solution
Since $\vec F = \vec \nabla f$, we know that $\int_C\vec F\cdot d\vec r = \int_C df = f(B)-f(A)$, work done is the difference in potential. We compute
- $f(B) = f(-2,6)=(-2)^2+3(-2)(6) = -32$,
- $f(A) = f(1,2)=(1)^2+3(1)(2) = 7$, and
- $f(B)-f(A) = -32-7 = -39$.
The work done is -39 Nm.
Group problems
- Suppose $f=x^2y+3z$.
- Compute $df$.
- Compute $\int_{ (1,2,3) }^{ (0,-1,2) } df$.
- Let $\vec F = (5y,5x)$.
- Find a potential for $\vec F$, or explain why none exists.
- Compute the work done by $\vec F$ along the circle $\vec r(t) = (3\cos t, 3\sin t)$.
- Let $\vec F = (-5y,5x)$.
- Find a potential for $\vec F$, or explain why none exists.
- Compute the work done by $\vec F$ along the circle $\vec r(t) = (3\cos t, 3\sin t)$.
- Draw each curve or surface given below.
- $\vec r(t) = (3\cos t,3\sin t)$ for $0\leq t\leq 2\pi$.
- $\vec r(u,v) = (3\cos u,3\sin u,v)$ for $0\leq u\leq 2\pi$ and $0\leq v\leq 5$.
- $\vec r(u,v) = (4\cos u,v, 3\sin u)$ for $0\leq u\leq \pi$ and $0\leq v\leq 7$.
- $\vec r(t) = (3\cos t,3\sin t,4t)$ for $0\leq t\leq 6\pi$.
- $\vec r(u,v) = (u\cos v,u\sin v,v)$ for $0\leq v\leq 6\pi$ and $2\leq u\leq 4$.
- $\vec r(t) = (0,t,9-t^2)$ for $0\leq t\leq 3$.
- $\vec r(u,v) = (u\cos v,u\sin v,9-u^2)$ for $0\leq v\leq 2\pi$ and $0\leq u\leq 3$.
Presentations
We'll have people share 6.1 - 6.8.
Sun |
Mon |
Tue |
Wed |
Thu |
Fri |
Sat |