1. Draw the parametric curve $x=2+3\cos t$, $y=5+2\sin t$. Make a $t,x,y$ table of points, and then graph the $(x,y)$ coordinates. Finish by giving a Cartesian equation of this curve.
  2. Draw the ellipse $x^2+6x+4y^2+8y=12$.
  3. Draw the hyperbola $x^2+6x-4y^2+8y=-1$.
  4. Draw the parametric curve $\vec r(t) = (2+t^2,3t-4)$ for $-2\leq t\leq 3$.
    • Give $\frac{d\vec r}{dt}$. Then state $\frac{dx}{dt}$, $\frac{dy}{dt}$, and $\frac{dy}{dx}$.
    • Give a vector equation of the tangent line to the curve at $t=2$.
  5. Consider the curve $\vec r(t) = (2+4t,5-2t)$. Our goal is to visualize the difference quotient $\frac{\vec r(t+h)-\vec r(t)}{h}$.
    • Draw the parametric curve $\vec r(t) = (2+4t,5-2t)$ for $t\in[-2,3]$.
    • When $t=0$ and $h=1$, add to a graph of the curve the vectors $\vec r(t+h)$, $\vec r(t)$, and the difference $\vec r(t+h)-\vec r(t)$.
    • When $t=0$ and $h=1/2$, add to a graph of the curve the vectors $\vec r(t+h)$, $\vec r(t)$, and the difference $\vec r(t+h)-\vec r(t)$. How does division by $h$ affect the difference?
    • When $t=0$ and $h=1/4$, add to a graph of the curve the vectors $\vec r(t+h)$, $\vec r(t)$, and the difference $\vec r(t+h)-\vec r(t)$. How does division by $h$ affect the difference?
    • Visually, what vector do you obtain by computing $\lim_{h\to 0}\frac{\vec r(t+h)-\vec r(t)}{h}$.

Problem Set
Today

« January 2018 »

Sun

Mon

Tue

Wed

Thu

Fri

Sat

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31